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Abstract 

A new data-driven method for latency compensation in adaptive optics sytems is 
developed and evaluated in this paper. Conventional adaptive optic controllers typically 
assume a single timestep of latency in the feedback loop, which is an appropriate assumption 
for low-frequency applications such as atmospheric optics compensation. However, the 
controller frequencies needed for aero-optic applications can approach the tens of kilohertz. 
Cumulative latency in the feedback loop originating from digital communication links, 
sensors, processing, etc. can exceed one timestep and thus significantly reduce the 
performance of adaptive optic controllers, even though open-loop frequencies of individual 
components are sufficiently fast for the application. Our method uses proper orthogonal 
decomposition as a basis for wavefront model reduction and an artificial neural network to 
predict the evolution of the associated modal coefficients over a short temporal horizon 
equivalent to the amount of latency present in the feedback loop. The method is capable of 
significantly augmenting the performance of conventional adaptive optics controllers. This 
algorithm has been evaluated in closed-loop simulation with disturbance data gathered from 
the Airborne Aero-Optics Laboratory. Over a 5-step prediction window, the new controller 
could reduce OPDrms in the worst cases by over 35%. Over a single timestep window, 
mitigations of greater than 55% are realized. 

Nomenclature 
α = viewing angle (rad) 
β = modified elevation angle (rad) or integrator gain (-) 
ε = vector of wavefront prediction residuals 
λ = laser wavelength (m) 
ρ = air density (kg/m3)  
Σ = diagonal matrix of singular values  
Φ = matrix of POD modes (-) 
φ = eigenmode vector (-) 
A = state-space matrix describing linearized wavefront dynamics  
Az = azimuth (rad) 
a = modal coefficients  
C = compensator transfer function (-)  
D = aperture diameter (m)  
d = single-aperture aero-optic disturbance (m)  
E = root-mean-square residual error  
El = elevation (rad)  
f = disturbance frequency (Hz)  
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f = vector-valued nonlinear prediction function 
G = plant model transfer function (-)  
g = function describing flow evolution  
h = observer function of special flow properties 
H = number of hidden neurons (-) or sensor transfer function (-) 
I = on-target beam intensity (W/m2) 
I0 = unaberrated beam intensity (W/m2) 
KGD = Gladstone Dale constant (m3/kg) 
M = Mach number (-) or embedding dimension (-) 
Nd = number of timesteps of delay in the feedback loop (-) 
n = index of refraction (-) 
OPD = Optical Path Difference (m) 
OPL = Optical Path Length (m)  
S = Strehl ratio (-) 
St = Strouhal number (-)  
U = coefficient matrix  
V = freestream velocity (m/s)  
v = wavefront vector (m)  
W = wavefront vector (m)  
x = vector of coefficients (-) 
y = single-aperture aero-optic residual output (m) 
z = vector of flow properties  

I. Introduction 
major obstacle in the implementation of airborne laser 
systems is the aero-optical problem1. The aero-optical 

problem arises from changing density in the medium of a 
laser beam’s propogation in the near-field of the optical 
aperture: as density changes, the index of refraction of the 
medium changes, the laser beam will be distorted, and the 
airborne laser system will suffer a significant degradation 
in performance. A very common and useful configuration 
for laser pointing mechanisms is the classical turret, as they 
give airborne lasers a very large field of regard and enable 
the airborne system to illuminate a target with minimal 
limitations to its flight path. The aero-optical problem 
manifests itself on turrets in compressible flow as shown2 
in Figure 1: in turbulent boundary layers, pressure and 
temperature fluctuations contribute to significant density 
fluctuations as the boundary layer thickens; flow separation over the top of the turret results in large separation 
regions that roll up into “horn” and secondary vortices; necklace vortices form at the base of the turrets; and at 
sufficiently high Mach numbers (as low as M = 0.55), shocks will begin to appear at the top of the turret. All of 
these effects have a substantial aberrating effect on laser beams.  

The aero-optics problem is depicted schematically in Figure 2. An initially planar wavefront is propogated 
outward from the interior of the turret in the direction of a target. The beam then encounters a separated, turbulent 
flow, which unevenly retards the progress of the beam by slowing its propagation through the air. In the near field, 
the previously planar wavefront has been imprinted with an aberration. In the far field, this abberated wavefront will 
manifest itself as a laser beam of reduced intensity, scattered over a wider area. The index of refraction is related to 
the density of the medium through the Gladstone-Dale relationship3, ( , , ) 1 ( ) ( , , )GDn x y z K x y zλ ρ= + , where n is 
the index of refraction, λ is the wavelength, and KGD is a constant. This relationship can be used to compute the 
exact aberration along a path by first computing the optical path length from some point in the aperture,  

1

0
( , , ) ( , , , )

z
OPL x y t n x y z t dz= ∫ , and then subtracting the aperture-averaged mean to compute the optical path 

difference,  

A 

 
Figure 1: Optically-aberrating flow topology2. 
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( , , ) ( , , ) ( , , )OPD x y t OPL x y t OPL x y t= −  [1] 

 
Figure 2: Schematic of the aero-optics problem1. 

The root-mean-square of the optical path difference is a very convenient metric for estimating the 
performance of aero-optic systems since it enables the estimation of the ratio of the Strehl ratio: peak on-target beam 
irradiance to peak beam irradiance of the corresponding unaberrated beam. For instantaneous aberrations following 
a Gaussian spatial distribution, this can be done through the Marèchal large aperture approximation4,5,6, shown in 
Eq. 2. This relationship shows the heavy dependence of airborne laser system performance on wavefront aberration. 

22 ( )

0

( )( )
( )

rmsOPD tI tS t e
I t

π
λ

 − 
 = ≈ . [2] 

Clearly, it is desirable to maximize the Strehl ratio by mitigating aero-optical aberrations. It is conventional 
to quantify reductions in aero-optical aberration using the following definition,  

,
10

,

10 log rms corrected

rms uncorrected

OPD
dB

OPD
= . [3] 

Since laser wavelength is application-dependent, it is useful to consider the impact of wavefront aberration 
mitigation in non-dimensional terms by rearranging the equation in terms of a corrected and uncorrected Strehl ratio. 
This relationship is plotted in Figure 3 for several amounts of mitigation. The reader will note that a -3dB (50%) 
correction would improve an uncorrected Strehl ratio of 0.2 to 0.67, for instance. It can be concluded that even 
seemingly-modest improvements to OPDrms can lead to substantial increases in the Strehl ratio. 

 
Figure 3: Effect of wavefront mitigation on Strehl Ratio. 



Burns, Gordeyev, Jumper                                                                                                                     AIAA-2015-0679 

 
American Institute of Aeronautics and Astronautics 

 
 

4 

A very large body of work has been performed to characterize aero-optical effects on the Airborne Aero-
Optics Laboratory7 (AAOL), which is shown in Figure 4. AAOL consists of a pointing and a tracking aircraft. The 
pointing aircraft shoots a diverging beam at the tracking aircraft’s turret, so that the aero-optics of the pointing 
aircraft manifest primarily as tip/tilt aberrations. The aero-optical aberrations of the tracking turret are imprinted on 
the laser beam near the aperture and then measured by a Shack-Hartmann wavefront sensor in the tracking aircraft. 
An important discovery in the AAOL program is that for some applications, the aero-optic disturbances in the 
turbulent boundary layer prior to separation may be tolerable; however, the strong aberrations present in the 
separated wake region aft of the turret are likely very deleterious to the performance of laser-based systems. 

 
Figure 4: Picture of the Airborne Aero-Optics Laboratory (AAOL). The pointing aircraft is depicted on the 

left and the tracking aircraft on the right.7 
An important discovery in the AAOL program is that aero-optical aberrations tend to collapse onto a curve 

that is a function of two quantities: a lookback angle, α, and a modified elevation angle, β. These two quantities can 
be expressed7 in terms of azimuth and elevation as shown in Figure 5, and expressed mathematically as follows, 

[ ]1cos cos( )cos( )Az Elα −=  [4] 

1 tan( )tan
sin( )

El
Az

β −  
=  

 
 [5] 

Aero-optical aberrations must be mitigated using some technique for many applications involving either 
communications or directed energy. There are two primary ways of achieving this: flow control and adaptive optics. 
Flow control devices are generally very application-dependent. Transonic flow control devices consisting of porous 
screens have been developed by Gordeyev et al8 that relocate shocks away from the turret aperture, forcing the sharp 
optical discontinuity introduced by the shock to form upstream and subsequently dissipate into less optically-
degrading structures. Smith and Gordeyev have studied 
devices9 that break up large, optically-active eddies in the 
boundary layer into smaller eddies that introduce less 
optical distortion. Vukasinovic et al10 used high frequency 
synthetic jets to reduce the optical aberrations present in 
the wake of a hemisphere.  Later, Vukasinovic et al11 used 
a hybrid of passive and active flow control: by using a 
forward-protruding plate to decouple the turret wake from 
the necklace vortices, the effectiveness of the oscillating 
jets upstream of the optical aperture to control the turret 
wake was enhanced. Vukasinovic et al12 have also tested 
control jets in the transonic regime to control separation 
both upstream and downstream of the shock to reduce the 
sharp velocity and density gradients present in the shear 
layer. This type of flow control was studied in more detail 
by Gissen et al13 using Particle Image Velocimetry (PIV) and Schlieren imagery. 

Another means of aero-optic mitigation is to use adaptive optics. These systems imprint the conjugate of 
the currently-present aero-optic aberration onto a deformable mirror, and then send the pre-corrected laser beam out 
from the turret. When the corrected beam then encounters the aero-optic aberration, it emerges from the flow as 
nearly planar. These techniques are currently employed to great effect on ground-based telescopes to correct for 
atmospheric optical effects. However, these aberrations occur on the order of 1-10 Hz and thus the computational 
and system requirements are not extremely demanding for currently-available technology. However, aero-optical 
phenomena consisting of shocks, turbulent boundary layers, shear layers, etc. occur on the order of kilohertz on full-
scale turrets at realistic Mach numbers. In particular, the dominant frequency content of separated flow on a turret in 
the wake region typically occurs near a Strouhal ratio of about 1: 

fDSt
V

= , [6]  

 
Figure 5: Definition of α and β in terms of of 

azimuth and elevation7 
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where f is the frequency of the disturbance in hertz, D is the turret diameter, and V is the freestream 
velocity. For the Airborne Aero-Optics Laboratory, the disturbance frequencies observed in the wake region were 
concentrated near 1 kHz. Thus, a real-time adaptive optic system must be able to perform corrections at a minimum 
of 10kHz, assuming 10 discrete corrections per disturbance cycle. This is a demanding computational requirement 
given that wavefronts must be represented by matrices that are at minimum 10x10, and sometimes as large as 30x30. 
Despite this, existing technology is rapidly approaching a capability level where these real-time corrections are in 
fact feasible. The major obstacle will be cumulative latency in the system. Time spent on digital calculations, 
physical sensor response, analog-to-digital conversion of sensor signals, electronic amplifiers, and 
electromechanical response of deformable mirrors will all contribute to a significant degree of delay in a high-speed 
adaptive optic system.  

There are a number of methods that have been designed to solve this latency problem. Burns et al 
demonstrated the feasibility of a system14 that relates pressure signals surrounding a beam aperture and optical 
wavefronts that would allow fast computation of wavefronts from real-time pressure signals, thus significantly 
reducing the latency problem. However, this was only demonstrated for transonic flows where pressure fluctuations 
are very strong and easy to distinguish from noise. Nightingale et al15 have developed a hybrid flow control/adaptive 
optics approach that uses a phased-locked loop to synchronize the flow and a controller algorithm, enabling high-
speed correction of periodic flows. Faghihi et al16 have developed a state-space model and filter for the prediction of 
POD mode coefficients that could also be used in a predictive controller. Goorskey et al17 have proposed a 
promising controller based on the Dynamic Mode Decomposition of Schmid18 that is capable of compensating for 
one timestep of delay. Their algorithm was demonstrated to show a significant improvement (approximately 25% on 
average, and in many cases more) in controller performance. 

As we will now show, even a small number (<5) of timesteps of latency in a system is capable of 
substantially reducing performance of a closed-loop controller. Consider the simplified feedback control model of 
Figure 6. We assume that each subaperture can be treated independently of all others. While this is certainly not a 
good assumption in reality, we believe it is sufficient to obtain a better understanding of the impact of feedback 
latency. In this simplified model, G represents the transfer function of the deformable mirror, H represents the 
transfer function of the sensor, C represents the transfer function of the controller, d is the aero-optical disturbance, y 
is the residual disturbance not corrected by the controller, and r is the reference input (usually 0).  

 

 

Figure 6: Simplified single-subaperture single-input single-output (SISO) adaptive optics model. 
A common assumption in the analysis of adaptive optics systems is that the rise time of the deformable 

mirror and amplifiers is much smaller than the equivalent frequencies associated with disturbances. Additionally, a 
PI (proportional-integral) controller is often used as a starting point for AO control design. Finally, for this model 
we assume a sensor model that perfectly measures the residual disturbance, but with some number of timesteps of 
latency denoted by Nd. The transfer functions for these components in the z-plane19 are listed as follows: 

( ) 1G z =  [7] 

( )
1

zC z
z

β=
−

 [8] 

1( )
dNH z

z
=  [9] 

We again stress that a real AO system is far more complex than this; but this should serve as a 
demonstration for the importance of feedback latency. We chose to model this in the discrete domain and then scale 
it to a notional controller operating at 25kHz to match AAOL using the Tustin transformation19, 

( ) ( )1 / 2 / 1 / 2sTz e sT sT= ≈ + − , where T is the sampling time of the system and s is the complex Laplace-domain 
variable. The sensitivity function of the AO controller in the z-plane is given as,  

C G

H

d

yr ++
- +
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1
1( )

1 dN
y zz
d z zβ −

−
=

− +
. [10] 

Next, we plot this this sensitivity function for several amounts of system latency as well as a gain value 
selected to achieve a 60 degree phase margin – a common performance target20 in controls engineering. For our 
notional SISO system operating at 25 kHz, the sensitivity function for 1 to 5 timesteps of latency is shown in Figure 
7. While a single timestep of latency certainly limits the disturbance rejection, additional latency dramatically 
reduces the disturbance rejection bandwidth. This latency may originate from the sensor and wavefront 
reconstruction as modeled here, or it may show up in communication links or even as “apparent” latency in the 
deformable mirror and amplifiers. In either case, it can be concluded that as the latency increases, the feedback gain 
must decrease. T 

 

Figure 7: Effect of latency on a the disturbance rejection function of a properly tuned conventional controller 
operating at 25 kHz, holding phase margin = 60 deg. 

 
As of this moment, there are no hard requirements on the amount of latency compensation that a system 

must be able to handle. One step of prediction may be sufficient, but it is not unlikely that the total latency in an 
adaptive optic system will exceed a single timestep for the reasons previously mentioned. In this paper, we evaluate 
the performance of a new type of adaptive optics controller. We implement intelligent algorithms that predict over a 
short temporal horizon the evolution of aero optic aberrations. We realize this through model reduction using Proper 
Orthogonal Decomposition (POD) coupled with a predictive Artificial Neural Network (ANN). We attempt to 
predict the flow’s evolution over multiple timesteps and show what performance gains are possible through 
simulation of a feedback controller based on disturbances from actual AAOL flight test data. 

II. Theoretical Background 
The objective of this paper is to develop a latency-tolerant architecture for airborne adaptive optic systems. 

As a first step, we propose the existence of a general prediction model. This predictor has the ability to precisely 
specify the state of the flow at some time in the future given only the “current” flow conditions. Therefore, it can be 
assumed that important attributes such as boundary conditions are in a sense built into this predictor function. Let 
the true state of the flow field at time step k be denoted as zk. The true state of the system evolves according to some 
non-linear vector-valued function g, which is our general predictor, 

1 ( )k k+ =z g z . [11] 
In general, this function g could be represented by a discretization of the Navier-Stokes equations. 

Practically, however, it is not possible to precisely know the true state of the entire flow field at any given time: this 
would require full knowledge of density, temperature, velocity, and pressure at each point in the flow. Given the 
chaotic behavior of the flow, even small measurement errors would quickly give rise to very large errors in the 
prediction.  

A more practical approach is to develop a model that relies solely on observations of relevant flow features 
while taking advantage of patterns that are recurrent in the flow. From the Gladstone-Dale relationship, it can be 
quickly seen that optical aberrations are a direct result of density fluctuations in the flow. While these density 
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fluctuations are typically a result of pressure or temperature changes, it is not necessary to precisely identify these 
variables in order to predict optical effects. Therefore, we shall make observations of the true state of the flow field 
using a wavefront sensor, which essentially gives information about the density field of the flow. Let this 
observation function be denoted h, 

( )k k k= +v h z ε , [12] 
where vk is the optical wavefront observed at time k and is a function strictly of the flow state plus some 
measurement error εk. The function h is surjective and not bijective – therefore, while it may be possible to make 
inferences about the state of the flow field zk, it is not possible to fully identify the flow field. This is acceptable as 
we are only interested in optical effects. Since it is not generally feasible to predict flow features based on 
underlying physical mechanics – i.e., to utilize Eq. 4 – we seek instead to approximate some other function that 
describes the evolution of optical wavefronts. This can be described as: 

( )1 1 1 1, ,...,k k k k M k+ − − + += +v f v v v ε  [13] 
We seek to achieve our objective by approximating the function f. The optimal choce of f will minimize the 

mean-square error of all εk, i.e. we wish to minimize 
2

1

L
kk

E
=

=∑ ε , where L is the total number of observations 

available. This is known as a Non-Linear Autoregressive (NAR) problem, and can be solved in a number of ways as 
will be discussed further.  

An additional challenge is that the number of elements in vk for useful and practical applications can be on 
the order of 103. If one were to assume a sufficiently small time step that the temporal evolution of wavefronts could 
be described by a linear system,

1k k+ =v Av , a full-rank matrix A would have on the order of 106 elements and thus 
require far too much computational power for real-time application. A potentially more robust approach is to reduce 
the dimensionality of the problem using modal decomposition21. Additionally, Goorksey et al17 have used Dynamic 
Mode Decomposition18 to estimate a low-rank approximation of A to improve real-time feasibility. 

The problem of calculating POD modes, also known as Karhunen-Loève (K-L) modes, in the multi-
dimensional case for discrete-time data is typically solved using the singular-value decomposition (SVD), but may 
also be solved by solving the eigenvalue problem on a dataset’s autocorrelation matrix. In this case, let V be a 
matrix of measurement snapshots of wavefronts organized by column vectors of samples ordered by increasing time 
as shown, 

[ ]T= 1 2 NV v v v . [14] 
Then V may be decomposed using SVD as 

H=V UΣΦ , [15] 
and the spatial modes may be extracted from the columns of Φ, 

[ ]1 2 R=Φ φ φ φ , [16] 

where rank( )R = V . The temporal coefficients are then calculated from a projection of the spatial modes onto the 
original observations. Taking advantage of the fact that the pseudoinverse of an orthonormal matrix is its Hermitian 
transpose, this can be written as 

H+= =x Φ V Φ V , [17] 
where x is a matrix of temporal coefficients. This is an important fact in terms of computational efficiency since it 
means that the projection of wavefronts onto POD modes is a simple matrix multiplication. The POD modes are 
ranked by the importance of their contribution to the overall energy of the system. Quite often, the POD modes 
converge quickly to give a good low-dimensional model. Additionally, in the case of naturally occurring fluid flow, 
low order modes typically exhibit smooth behavior. If it is assumed that the POD modes do not change, then each 
wavefront can be decomposed as follows, 

1
( )

N

k n n
n

x k
=

=∑v Φ , [18] 

where nΦ  are the time-invariant POD modes, xn(k) are the coefficients at timestep k, and N is the desired truncation 
dimension. Additionally, we assume that M snapshots are sufficient to approximate the next wavefront in the 
sequence: we refer to M as the embedding dimension22. In this case, the NAR problem becomes a function of the 
modal coefficients, as shown, 

( )1 1 1 1 1, ,...,N
k k k k M k+ − − + += +v Φ g x x x ε , [19] 
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where 1
N LxN∈Φ �  are the truncated set of POD modes and : NxM N→g � �  is the nonlinear prediction function. 

Thus, it is necessary to use some method to estimate the function g. Now that we have chosen a means of 
approximating a sequence of wavefronts it is necessary to develop a model that can predict the evolution of these 
modes. This is certainly challenging, as the behavior of the modal coefficients in a real flow will be, in general, non-
linear. If the timestep is sufficiently small linear behavior can be assumed. If this assumption is made, methods such 
as DMD17 or linear state space modeling can be used.  

A visualization of POD modes for the 114 degree viewing angle from AAOL data is shown in Figure 8. 
The reader may note that the modes tend to come in pairs that often capture the convective nature of turbulent flow, 
especially for the lower-order modes. The higher-order modes tend to contain higher spatial frequencies, and tend to 
become progressively less useful in capturing turbulent structures. It should therefore be expected that any 
predictive element should do a better job with the lower order modes than with higher order modes. Additionally, it 
is important to note that the POD truncation effectively imposes a limit on the performance of the controller. This 
limitation is shown in Figure 9. 

 
Figure 8: First sixteen POD modes from the 114.7 deg. viewing angle from AAOL flight tests, from most 

energetic (top-left) to least energetic (bottom right). 
 

 
Figure 9: Maximum achievable correction for a given number of POD modes for the 114 deg. viewing angle. 

 
In our case, we choose to use an Artificial Neural Network23 to model the behavior of the POD coefficients, 

as they have been demonstrated to be very useful for non-linear dynamical systems24. It has been shown that any 
multilayer network25 can approximate, to an arbitrary degree of accuracy, any non-linear function with sufficiently 
many hidden neurons.  

The network topology used in this paper consists of one input layer, one hidden layer, and one output layer 
as shown in Figure 10. This is the minimal topology needed to approximate an arbitrary non-linear system, and since 
it is desirable to keep the number of necessary computations to a minimum, this is deemed to be a good starting 
point for network optimization. The inputs to each neuron are essentially a weighted summation of every single 
network input with the addition of a bias term. These inputs are then passed to a sigmoid activation function (in this 
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case, a hyperbolic tangent). This sigmoid function gives the network its non-linear character. The outputs are then 
combined linearly to form the output layer. Thus, the training objectives are to find the input weights, output 
weights, input bias, and output bias that minimize mean-square error. This can be achieved using methods such as 
the Levenberg-Marquardt26 algorithm or the iterative reverse propagation (iRPOP+)27 algorithm, which are both 
adaptations of the classical Newtonian gradient descent algorithm that operate by backpropagating errors through 
the network. 
 

 
Figure 10: Predictive Artificial Neural Network topology. The network takes M input vectors prior to and 
including timestep k, to predict the system state at timestep k+1. H is the number of neurons in the hidden 

layer. N is the number of state variables in the vector x. 
There are some additional considerations to be made when training the neural network. One must manage 

the quality of the regression on the training data set against the ability of the network to generalize to new data: in 
other words, a low mean-square error does not imply that the network will be able to accurately predict new patterns 
or even slight variations on previously-seen patterns. This is exactly analogous to the canonical example of fitting a 
high-order polynomial to a linear process corrupted with noise. The neural network can indeed detect some of the 
nonlinearities present in the underlying process and adapt to them, but if the network is too large then the overfitting 
problem will begin to manifest itself. However, this overfitting problem can show up in other ways. Even if the 
network is slightly too big, overfitting can be mitigated by either “early stopping” or regularization techniques. Early 
stopping consists of exiting the training loop before a local minimum on the residual error is reached during gradient 
descent: generally, this means that the weights in the network will be smaller in magnitude, forcing the network to 
tend toward linearity. Another method is to use explicit regularization, which imposes a penalty on the weights of 
the network. We use early stopping in this work, but will examine other regularization techniques in future work. 

Another consideration is the local minimization problem: neural networks will typically not converge to a 
globally minimal mean-square error during training. One way to mitigate this is to train a collection, or an ensemble, 
of neural networks using similar training data and then average the output of each network to obtain a better result. 
The ensembling technique is widely28,29 used in practical applications of neural networks, and the authors have 
found it to be beneficial for the aero-optic prediction problem as well. This begs the question: should the training 
data set for each member of the ensemble be identical to all others? This has been the subjective of a fair amount of 
research in the statistical learning community. A number of methods have been developed to answer this question: 
two commonly-used approaches are adaptive boosting30 (AdaBoost) and bootstrap aggregating31 (bagging). Since 
bagging has been used with a good deal of success in neural networks, we chose this approach for the analysis in 
this paper. Bagging simply consists of uniformly sampling from the training data set for the number of samples 
actually included in the set. In general, this leads to a number of unique samples in the training data set as well as a 
number of repeated samples. 

Finally, the algorithm also uses a gain-tuning algorithm to obtain the optimal PI feedback gain for the 
training data. This is done using a simple gradient decent, which is run iteratively until convergence is achieved: 

1
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n
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III. System Architecture 
The system architecture proposed is shown in Figure 11. One of the benefits to the predictive controller is 

that it is designed to augment a classical adaptive optics control loop in order to reduce the number of integration 
changes required to existing AO systems. The reader may observe that there are effectively two feedback loops: one 
optical feedback loop (the “outer” loop) as well as a feedback loop for the DM controller itself (the “inner” loop).  

 
Figure 11: Augmented classical controller with predictive wavefront block. 

In practical application, there are a few approaches that could be used to train the predictive controller. One 
approach is to “pre-train” the network and store a grid of POD mode sets and neural networks for various viewing 
angles and flight conditions. Another approach is to train the POD modes and neural network in real-time (but at a 
reduced update rate) and then update the network with the new information once those computations are complete. 
Such a system would operate at different rates: a high-speed wavefront control loop and a low-speed training loop 
that would synchronize with each other at the end of each cycle in the low-speed loop. There are potential issues 
with this, such as system stability during the transition region, but nonetheless this may be a viable option. 

IV. Results 
 The algorithm was tested on actual flight data from AAOL on a range of viewing angles. The data was 

taken at 25kHz. In each case, the algorithm was trained on 1500 wavefront snapshots and then tested on the 
following 1500 snapshots. A simulation package was written in C and executed on the Notre Dame Center for 
Research Computing Cluster using all available AAOL flight test data. 

An optimization study was conducted using this simulation package to learn more about the predictive 
capabilities of this algorithm. Parameters varied were H, the number of hidden neurons; M, the embedding 
dimension; K, the number of prediction steps; and N, the truncation dimension (or number of POD modes used by 
the predictive controller). We found that as one may expect, as K increases the benefit from a higher value of N 
decreases: that is, the higher-order modes become harder to predict over a longer period of time. We found that H 
should be approximately 50% greater than the value of N. Finally, the optimal value of the embedding dimension, 
M, was found to be approximately 4. For a value of M ≤ 2, the network was unable to make good predictions since it 
was underfitting the training data. For M ≥ 6, the network suffered from overtraining – that is, it attempts to replicate 
nonphysical patterns and/or noise. 

The mean disturbance rejection for five different amounts of latency is shown in Figure 12. As one may 
expect, the quality of the prediction and thus the mean disturbance rejection becomes worse as the latency increases. 
Nonetheless, these are very large improvements from the conventional controller.  
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Figure 12: Mean disturbance rejection for the simulated controller using all available flight test data from 
AAOL. 

Figure 13 shows the disturbance rejection function for three viewing angles and five different values of 
latency. The controller actually performs very poorly on the low-frequency end of the spectrum, which is exactly 
opposite of what one might expect from a PI controller. However, it seems to concentrate on suppressing 
disturbances near 1 kHz, which is where the dominant disturbances occur. This is favorable behavior, since it 
indicates that this neural network approach will automatically seek to suppress the dominant disturbances and ignore 
the less important frequencies. The reason this occurs is two-fold: clearly, POD and the neural network focuses on 
suppressing the dominant disturbances; however, a side-effect of only controlling 16 POD modes is that it 
effectively means that some of the disturbances are “filtered” out of the control loop. Effectively, this is a modal 
controller that simply focuses on suppressing the most optically-active modes. 

This also suggests that future iterations of this control design could perhaps use split-frequency control or 
similar configuration. One may consider that a wavefront disturbance can be split into two parts for the modal 
controller we have analyzed in this work: 

( )

1 1
( ) ( ) ( ) ( ) ( )

RankN

controlled uncontrolled i i j j
i j N

t t t x t x t
= = +

= + = +∑ ∑
V

v v v Φ Φ . [21] 

That is to say: the uncontrolled part of the wavefront is orthogonal to the controlled part, since the 
controlled part of the wavefront is simply a superposition of the first N POD modes. Thus, it may be possible to use 
this property to develop a simple controller with a very low feedback gain for the “uncontrolled” part of the 
disturbance. This may yield a substantial improvement in controller performance on the low end of the frequency 
spectrum. 
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Figure 13: Error rejection function for a number of latency amounts for three different viewing angles. 

 
A time series of the POD tracking performance of the algorithm for a viewing angle of 114 degrees is 

shown in Figure 14. The algorithm does a very good job of tracking the first few modes, with performance slowly 
tailing off as the constituent frequencies of the modes increase and the behavior of the modal coefficients becomes 
more complex. An important result from this observation is that as the desired prediction window increases, the 
number of modes that can be reliably tracked will decrease. 
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Figure 14: POD mode coefficient prediction for α = 114 deg, 5 step prediction (200μs latency assumed), with 

H = 24, M = 4, N = 16. 

V. Conclusions 
The aero-optics problem is one of the primary obstacles in the implementation of airborne laser systems.  

We have shown simulations of a new type of adaptive optic controller that is capable of compensating for latency in 
a conventional adaptive optics controller, significantly increasing performance over multiple time steps of delay. At 
a single timestep (40 μs) of latency for a 25 kHz controller, we have demonstrated the feasibility of better than 55% 
reduction in effective OPDrms in the most optically-aberrating environments. At 5 timesteps (200 μs) of latency, we 
have demonstrated the feasibility of approximately 35% reduction in OPDrms. With this much latency, a 
conventional adaptive optics system would require such a low gain that mitigation would be hardly worthwhile. This 
degree of mitigation is very promising given that 200 μs is a very long computational window. The results we have 
obtained so far show similar mitigation to the DMD-based controller of Goorskey et al17 for one timestep, but we 
attempt to predict over a larger temporal window. We would also like to point out that for larger turrets, the 
necessary sampling frequencies for effective control scale inversely with the turret diameter. For example, a notional 
turret three times as large as the AAOL turret would require only a ~8 kHz controller and the effective prediction 
window for the controller examined in this work would jump from 200 μs to 600 μs – an even softer computational 
requirement. 

Future work will focus on analyzing the stability properties of this controller, online learning, realistic 
dynamics models for the deformable mirror and amplifiers, computational efficiency, and improving the 
performance of the controller on the low end of the frequency spectrum. In particular, online learning is likely 
necessary for a robust real-time controller. The ability to adapt to slowly changing flow conditions is certainly 
feasible computationally with current hardware. However, updating the controller during these changes without 
affecting the stability of the controller could prove to be challenging, and the authors would like to develop a better 
understanding of this problem. The inclusion of realistic dynamics models for the deformable mirror and amplifiers 
will likely not prove to be fundamentally challenging, but are nonetheless needed to improve confidence in the 
method. Methods such as model predictive control (MPC) will likely be used in future work to better synergize the 
benefits of the POD/ANN predictive method with the feedback controller itself. Also, it may be desirable to use 
methods such as frequency splitting to improve controller performance on the low end, while leaving the higher-
frequency components to the predictive controller. 
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