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ABSTRACT

Current Shack-Hartmann Wavefront Sensor (SHWFS) reconstruction algorithms for aero-optical research under-
perform in the presence of flow features with strong density gradients, such as shockwaves in supersonic flow.
The large density variations in shockwaves violate the key underlying assumption of SHWFS; that local changes
in the wavefront within the lenslet subaperture manifest primarily as tip/tilt. In these cases, the image-plane
irradiance pattern of individual lenslets can exhibit high-order aberrations, resulting in non-tip/tilt behaviors.
Standard least-squares wavefront reconstruction methods fail to accurately recover the wavefront in the presence
of a shock due to the least-squares estimator’s tendency to give too much “influence” to outliers present in the
measured SHWFS data, resulting in an underprediction of the optical-path difference (OPD) across the shock.
A new algorithm is described to overcome the limitations of the standard least-squares reconstruction method.
Two weighting functions are investigated with the aim of using additional intensity information to quantify the
degree to which each subaperture is aberrated. The least-squares estimator is replaced with a robust estimator
to perform outlier handling and regularizing terms are then used to further constrain the spatial organization
of the solution. The problem of wavefront reconstruction is cast as a global functional optimization problem
where minimization is achieved iteratively. The algorithm is then evaluated on a sample of Mach 6 SHWFS dot
patterns where oblique shocks produce flow discontinuities. The results show that the algorithm is capable of
accurately targeting discontinuous flow features as outliers, and subsequently altering those outliers, increasing
the OPD as well as the sharpness of the shockwave structure.
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1. INTRODUCTION

For turbulent, compressible flow, spatiotemporal variations in the local density lead to commensurate variations
in the local index of refraction.1 While this “aero-optical” effect can be exploited to measure the fluid-mechanical
behavior of a variable-density flow, it presents considerable challenges when the objective is to propagate light
through variable density fluids while maintaining phase coherence, such as in airborne optical communication.
It is no surprise then, that measuring and compensating for aero-optical effects is of prime importance when
designing airborne optical systems operating in compressible flow conditions.

Index of refraction variations in the beam are related to density variations via the Gladstone-Dale relationship:

n = 1 +KGDρ, (1)
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where the density, ρ is related to the index of refraction, n, through the Gladstone-Dale constant, KGD.The
optical path difference (OPD) is then the integrated effect of the mean-removed index of refraction variations
along the beam path,

OPD(x, y) =

∫
ρ′(x, y, z)dz, (2)

where ρ′ indicates fluctuations in the density and propagation in the z direction is assumed. The OPD distor-
tions negatively impact the ability of airborne optics systems to focus their optical power onto a target. Typical
methods of mitigating beam distortions usually include using adaptive optics compensation systems that correct
wavefront aberrations.2 Additionally, flow control strategies may be employed to improve the aero-optical envi-
ronment that a laser is propagating through.3 The performance of these methods is dependent on the accuracy of
wavefront measurement and reconstruction. The most common method for measuring aero-optical wavefronts is
the Shack-Hartmann Wavefront Sensor (SHWFS), which has the advantage of being cost-effective and relatively
easy to deploy. The SHWFS partitions the beam using an array of lenslets that focus the light onto the image
plane of a detector, as shown in Fig.1 allowing representation of the wavefront as an array of local tilt measure-
ments. While not an issue in many cases, the large density gradients associated with flow phenomena such as
deep turbulence,4,5 highly vortical flow,6 and shockwaves7,8 cause high -order aberrations in the focused SHWFS
dot pattern that limit the accuracy of SHWFS measurements. As aerospace technology advances—especially
regarding light propagation through variable density flows—demands on the capabilities of these measurement
techniques also increase. As such, the purpose of this research is to overcome the limitations of the SHWFS
measurements by recovering more accurate wavefront estimations from data acquired in the presence of shocks,
deep turbulence and similar environments.

Figure 1. An example diagram of the SHWFS measurement system.

Consider the standard method of processing SHWFS dot patterns; the first central moment of each dot is
computed as,

x =

∫∫
I(x, y)xdxdy∫∫
I(x, y)dxdy

, (3)

where I(x, y) is the recorded intensity within the lenslet area-of-interest (AOI), and x is the spatial location
(similar equation for y direction). Absent any extreme flow phenomena as previously mentioned, Equation (1)
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provides an accurate result for the focused dot position. Dot positions (centroids) are then used to obtain the
local wavefront gradient,

θ =
(x− x)

fL
, (4)

where θ is the measurement of the local wavefront gradient at each AOI and fL is the focal length of the lenslet.
Now consider imaging through a shockwave, as in Kalensky et al.;8 strong density variations cause the dot to
bifurcate, fundamentally changing the nature of the subaperture intensity distribution. This dot bifurcation
violates the underlying premise of the SHWFS measurement technique; that the local wavefront slope for a
given lenslet is solely optical tip/tilt. While the focus of this current research is on recovering more accurate
wavefront estimations from aero-optical data such as shockwaves, another example of this problem can be seen in
works investigating the impact of deep turbulence on SHWFS measurements.9 Here, the accumulation of density
fluctuations in the optical path causes destructive interference in the propagating laser, resulting in significant
intensity fluctuations and beam spreading in the image plane, called scintillation. As will be discussed in more
detail, these violations can be regarded as outliers in the data that can be handled in a statistical fashion.

2. OUTLIER DETECTION IN SHWFS

2.1 Least-Squares Wavefront Reconstruction

In standard reconstruction algorithms, slope measurements from the SHWFS are used to reconstruct the wave-
front by minimizing the difference between the gradient of the reconstructed wavefront and the measured slopes
at each point in the image domain. This may be expressed as a global energy minimization problem,

J(W ) =

∫∫
∥∇W − θ∥22dxdy, (5)

where ∇W is the gradient of the wavefront estimation, θ is the measured slopes and J(W ) is the global energy
functional to be minimized. Standard reconstruction algorithms solve this linear least-squares problem using a
sparse matrix approach, which is a relatively inexpensive computation that can be done by solving the normal
equations, see.10–12 For continuous representations of this problem, optimality conditions may be obtained using
the Euler-Lagrange Method, which results in the strong formulation of Equation (5),

∂2W

∂x2
+
∂2W

∂y2
=
∂θx
∂x

+
∂θy
∂y

, (6)

where Equation (6) is a Poisson’s Equation, constraining the divergence of the slope to match the Laplacian of
the reconstructed wavefront at every spatial point in the domain.

Unlike solutions to other inverse problems, where the outliers are readily identifiable within the data,13 outliers
in SHWFS are expressed in a different way. There are two main classes of outliers discussed in this work: data
outliers and spatial outliers. Data outliers constitute violations of the underlying assumptions present within
SHWFS measurements, stemming from limitations of the measurment system itself. Spatial outliers indicate
violations in the physical assumptions imposed on the spatial organization or “coherence” of the solution.

Figure 2. Schematic of AOI with dot bifurcation (left) and scintillation (right). Taking the centroid of both cases yields
a centroid equivalent to one from a dot that does not violate the tip/tilt measurement assumption of SHWFS.
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For data outliers, consider typical violations of the assumptions inherent in SHWFS measurements such as:
dot bifurcation due to a shockwave or scintillation due to extreme atmospheric turbulence. Recall Equation (4);
the slope measurements are dependent on the calculated centroids within a lenslet AOI. Consider the example
of Fig.2, for both dot bifurcation and dot scintillation. Centroids calculated using Equation (3) would certainly
yield a value for the centroid. Even in the case of total intensity dropout due to the existence of a branch point,
the reference centroid would be used, essentially returning a value of 0 for the local wavefront gradient. It is
therefore straightforward to conclude that, in the case of data outliers due to non-tilt behavior in the lenslet
array, the centroid calculated is not representative of the true local wavefront gradient at that measurement
location. Put another way; the standard method of wavefront reconstruction from SHWFS measurements is
blind to the true magnitude of the local wavefront gradient, and therefore its own data outliers. In fact, the local
wavefront gradient should be higher than what the SHWFS would typically indicate. For example, in Kalensky
et al.,8 it is noted that, for changes in OPD greater than 0.5π rad, standard least-squares reconstruction leads
to a significant underestimation of the wavefront value across the shock.

Figure 3. Raw SHWFS dot patterns showing no-flow reference (top left) and Mach 6 flow (top right). Least-squares
reconstruction without tip/tilt/piston removal (bottom left) and with tip/tilt/piston removal (bottom right).

In contrast to violations in the premise(s) of the measurement systems indicative of data outliers, the classifi-
cation of spatial outliers in this work is primarily concerned with short-comings of the least-squares reconstruction
algorithm. Again, consider the case of a shockwave: it is well known that shockwaves typically span space on
the order of a few mean free paths of air, which can be considered a spatial discontinuity at the resolutions
typical of SHWFS. That discontinuous nature should certainly be reflected in the solution. However, standard
least-squares SHWFS reconstruction causes that sharpness to blur as the influence of the large residual due to
the magnitude of the wavefront gradient at that location becomes large. In the bifurcated dot shown in Fig.2,
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the effect of shockwaves not only violates the premise that the local wavefront gradient is determined purely via
local tilt as in the case of a data outlier, the assumption that discontinuities should be “spatially coherent” in
the reconstructed wavefront is also violated. The latter of these violations occur as a direct consequence of the
reconstruction process.

2.2 Intensity Weighting Function

For this work, wavefront reconstruction algorithms were formulated and tested on SHWFS data acquired in
Notre Dame’s Mach 6 Hypersonic Quiet Tunnel. An example wavefront computed using the standard Southwell
least-squares reconstruction method is shown in Fig.3, with flow moving from left to right. There was no model
present in the tunnel test section, and the tunnel was not operating in its quiet configuration. As seen in the
dot pattern, there exist multiple shockwaves that span the thickness of at least one lenslet. However, the least-
squares reconstructed wavefront suggests a thicker shockwave structure. Additionally, the OPD before and after
the shock are roughly the same value, suggesting that there is no change in density across the shock, which is
non-physical. The non-physical nature of this result is due to the presence of both data and spatial outliers that
standard SHWFS reconstruction methods are not able to account for.

Figure 4. Quadratic estimator (left) with its corresponding influence function (right).

To address how outliers can be detected and handled, it is first important to establish the limitations of
the least-squares method. A well-known shortcoming of least-squares estimation is the least-squares (quadratic)
estimator’s sensitivity to outliers. This sensitivity is illustrated in Fig.4, where the quadratic estimator is shown
alongside its corresponding influence function. Specifically, the left plot of Fig.4 shows the magnitude of the term
inside the integral of Eq. (4), while the right plot shows its derivative; hence Fig.4 right shows that the influence
at any point in the solution domain linearly increases without bound as the magnitude of the residual increases.
Large residual values at a point in the domain result in an over-contribution to the solution that negatively
impacts the solution at other points in the domain. Therefore, the influence of outliers distributed among
neighboring points results in a smoothing effect which violates the assumptions of spatial coherence imposed
on the solution. These limitations inherent in least-squares wavefront reconstruction make improvements to the
standard algorithm necessary. The goal is to reformulate Equation (5) to detect and handle outliers such that
more accurate wavefront estimates can be recovered.

As previously mentioned, the focused intensity distribution within the lenslet AOIs no longer contains solely
tilt effects when extreme flow phenomena are present. In other works,9,14 heavily scintillated measurements lead
to the appearance of branch points and branch cuts, which are “hidden” to SHWFS reconstruction, where an
example from Steinbock et al.14 is shown in Fig.5. This can lead to a broadening and diffusion of the dot that
decrease the overall intensity, dot splitting in the case of dot bifurcation, or a combination of both. In order to
represent these effects on the focused dots within the data, additional intensity information is required.
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Two weighting functions were considered. The first looks at the overall illumination within each lenslet AOI
and characterizes the change in illumination during flow-on conditions relative to some flow-off reference.

I0 =
1

Inorm + ε
, (7)

where Inorm is the sum of the intensity in the AOI normalized by a no-flow reference and ε is a small, non-
negative value that prevents “blow-up” in cases where extreme turbulence leads to branch points that completely
extinguish intensity in the AOI. In cases where extreme flow decreases the intensity within an AOI, I0 takes on
a value greater than unity, indicating that the slope of the wavefront at that measurement point is likely higher
than what the SHWFS is capable of measuring. The advantage of Equation (7) is that it incorporates the effect
of decreased intensity due to heavy scintillation, where intensity in the lenslet AOI may not be present at all or
typical thresholding procedures may filter it out entirely.

In the case of dot bifurcation, significant decrease in intensity relative to some reference is not guaranteed, so
additional intensity-based quantities are necessary. As detailed in Kalensky et al.,15 the second-moment beam
spread,

D4σ = 4

√∫∫
I(x, y, )(x− x)2dxdy∫∫

I(x, y)dxdy
, (8)

incorporates already-calculated information from the first central moment, calculated via Equation (3), where
D4σ is the 2nd moment beam spread, which has a direct relationship to the degree by which a focused beam
is impacted by extreme variations in the OPD. From here, the second intensity-weighting function can be
expressed as,

Iσ =
D4σflow −D4σref

D4σref
, (9)

where the subscripts “ref” and “flow” indicate some reference (either no-flow or average) and flow-on measure-
ments, respectively. Furthermore, since it can be observed that the intensity distributions in x and y exhibit

Figure 5. Phase map containing branch points (white circles) and branch cuts (white lines), from Steinbock et al.14
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statistical independence, the D4σ value in x and y can be individually applied to the corresponding local slope
measurements. It should be noted that the incorporation of intensity information into the formulation is not
dissimilar to the approach used in Kim et al.,16 but the inclusion of D4σ allows for additional information to be
represented in the regression. For the intensity-weighting function, the reference-subtracted D4σ value is used
to characterize how much and in which direction(s) a dot is spreading due to extreme flow phenomena.

Figure 6. Intensity weighting function applied in both x and y directions based on overall intensity (top row) and
second-moment beam spread (bottom row).

An example of these weighting functions is shown in Fig.6. Note that Inorm is non-directional, as the total
intensity does not depend on the coordinate direction. As will be discussed later, the obvious presence of noise
due to non-uniform illumination plays a significant role in the reconstruction. Still, the locations of the shocks
are clearly represented in the weighting function. Recasting Equation (5) to include the intensity weights,

J(W ) =

∫∫
∥∇W − θI∥22dxdy, (10)

where the superscript indicates multiplication by an intensity-weighting function.

The intensity-weighted least-squares solution to wavefront reconstruction is shown in Figs.7 and 8, where it is
compared to the standard least-squares approach. Close inspection reveals that the solution weighted by I0 leads
to an increase in OPD in the areas where shockwaves are expected in addition to increasing the overall OPD.
In contrast, the solution weighted by Iσ has a relatively smaller increase in the same reconstruction locations.
Furthermore, it may be seen from the absolute difference between the unweighted and weighted solutions that
both weighting functions alter the solution around the oblique shocks, with I0 leading to much larger magnitudes.

Perhaps the most convincing detail of Figures 8 and 9 is that the OPD magnitude experiences the most change
after the shock, which is the expected result from the theoretical analysis and simulation results of Kalensky
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Figure 7. Comparison of unweighted least-squares reconstruction (left column) with overall intensity-weighted (middle
column) and second-moment beam spread-weighted (right column) reconstructions, shown without (top row) and with
(bottom row) tip/tilt/piston removed.

et al.8 While promising, there still exists the issue of the spatial coherence of the shockwave. Specifically, the
intensity-weighting function by itself does little to address the blurring of the shock into multiple domain points.
In fact, because the slopes are artificially increased by the intensity weights, this contributes further to blurring
as neighboring points are also influenced. The persistence of these spatial outliers highlights the need to develop
more robust reconstruction algorithms.

3. ALGORITHM FORMULATION

3.1 Robust Estimation

As shown in Figures 8 and 9, to develop a robust formulation for wavefront reconstruction, the vulnerability
of the least-squares (quadratic) estimator to the effects of outliers must be addressed. Whereas the intensity
weighting function can be a necessary step to uncover outliers within the data, further reformulation provides
the ability to reduce or remove the influence of those outliers on the solution. To overcome the problem of outlier
sensitivity, the use of robust statistics is employed.

In computer vision research, the problem of outliers was addressed with robust M-estimators17–20 in place of
the least squares estimators typically employed. In applications such as denoising,20 where the presence of noise
can introduce large residual values, robust estimators can limit the influence that large residual values have on
the overall solution, essentially preserving the underlying features. This idea was further extended to handle
sharp gradients occurring in the data such as discontinuities.21 This approach can also be used here to attenuate
the influence of outliers on the overall solution.

A robust estimator can be chosen to replace the least squares estimator. For the current formulation, the
Leclerc estimator was chosen,

fL(x; c) = 1− exp

[
1

2

x

c

]2
, (11)
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Figure 8. Absolute difference between unweighted least-squares and both overall intensity weighted least squares (left)
and second-moment beam spread weighted least-squares (right).

where x is the residual and c is a tunable parameter that controls the width of the quadratic bowl near small
residual values.

This estimator is chosen with two properties in mind: First the robust estimator is classified as a “redescending
estimator,” where the influence function of the estimator smoothly approaches zero for extreme outliers. Recall
that, for the least-squares estimator, extreme outliers at one point in the domain will change the values at
neighboring spatial points. This results in over-smoothing at locations where sharp gradients exist. The Leclerc
estimator and its influence function are shown in Fig.9, where the decreasing value of the influence function for
extreme residual values is a clear feature. Attenuating the influence of outliers allows for the preservation of
sharp gradients that are typically observed in shockwaves.

The second property considered during estimator selection is the control parameter c. Fig.9 also shows
the Leclerc estimator and its influence function plotted for different values of the control parameter, c. This
parameter is key to determining what is considered an outlier, as increases in the control parameter value allow
for larger values of residuals to be considered inliers, and vice versa. Measurements that exceed this threshold
determined by c have their influence reduced. As such, the control parameter works as an outlier detection
parameter that can be specified apriori, or even dynamically tuned during the iterative process.22

Unlike the quadratic estimator, redescending estimators are usually non-convex. This means that convergence
to a global minimum is not guaranteed, making optimization tricky. To circumvent this limitation, it is possible
to express Eq. 4 via an “outlier process”,22 at the cost of introducing a new minimizer for the objective functional.
The outlier process allows Eq.4 to be expressed as a family of weighted quadratics, which can then be optimized
in the least-squares sense while performing outlier rejection in the same way as a robust function. This makes
convergence, at least theoretically, guaranteed. Minimization with respect to the outlier process would then be
equivalent to minimization of the robust function with respect to its residual value and associated parameter
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Figure 9. Leclerc estimator (left) and its corresponding influence function (right) for various values of the control
parameter, c.

space.

The Leclerc estimator can be expressed as,

fO(x, z; c) =
1

2
z
[x
c

]2
+ ψ(z), (12)

where z is the outlier process introduced as a new minimizer to the functional and ψ(z) is a convex and decreasing
penalty function. Here, z takes values between 0 and 1 and ψ(z) takes values from ∞ to 0. For the Leclerc
estimator’s penalty function we have,

ψ(z) = z ln(z)− z + 1, (13)

By inspection, when z approaches 1, there is no penalty imposed as the measurement is considered an inlier
and the least-squares solution is preferred. When z approaches 0, the least-squares portion vanishes, and a heavy
penalty is incurred for introducing an outlier. The outlier process z expresses the robust estimator as a family
of quadratics that holds the advantage of convexity during optimization. Equation (12) for selected values of
z is shown in Fig.10 to demonstrate this expression. Note that the reformulation retains the tunable control
parameter c, which may still be used to control outlier detection thresholds.

3.2 Incorporating Regularizing Terms

While robust estimators are used here to perform outlier rejection, it is also necessary to explicitly include
additional constraints on the spatial organization of the data within the objective functional. For the current
formulation, two regularizing terms are considered. First, recall that outliers present in the data consist of
erroneously calculated centroids. Measurements of scintillated or bifurcated dots not only produce unreliable
centroids, but also lead to unreliably calculated slopes. Recall the strong formulation presented in Equation (6),
where the slope divergence is equated with the wavefront Laplacian; with the intensity weighting functions from
Equation (7) and Equation (9), the divergence of the weighted slopes may cause solution divergence during the
iterative process. Therefore, the spatial coherence of the wavefront must be explicitly enforced. As the current
formulation already consists of a constraint applied to the wavefront gradient, adding a regularizing term that
constrains the wavefront Laplacian itself is considered. This leads to the new global energy functional,

J (W ) =

∫∫
f0 (∥∇W − θ∥2; cd) dxdy + α2

∫∫
f0

(
∥∇2W∥2; cs

)
dxdy, (14)
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Figure 10. Leclerc estimator and its family of quadratics, shown for various values of the outlier process, z.

where the first term is a measure of “data fidelity” (subscript d); the solution’s adherence to measured data,
the second term is a constraint placed on the spatial coherence of the solution (subscript s), and α is the
regularization parameter that balances the relative importance between the two terms. Here, both the data
fidelity and spatial coherence terms are estimated with the Leclerc function. This formulation is similar to that
of Bardsley,23,24 with the exception that robust M-estimators are used to replace the least-squares estimators.
Bardsley23 theoretically proved that the solution to Equation (14) forms a well-posed system that strongly
converges to a unique solution when the estimator f0 is quadratic. The second regularizing term considered
seeks to preserve the spatial characteristics of the least-squares solution, which is known to be accurate at
locations absent of outliers. In order to do this, the inclusion of the least-squares reconstructed wavefront as a
prior is necessary. Specifically, minimizing the difference between the robust reconstruction and the least-squares
reconstruction can be expressed as,

β2

∫∫
(W −WLSQ)

2
dxdy, (15)

where WLSQ is the least-squares estimation of the wavefront and β is the regularization parameter that balances
the importance of this term with the data term and the spatial coherence term. This coercive, zeroth-order
regularizing term forces the reconstruction to comply with the least-squares estimates where the least-squares
estimates are assumed to be accurate—where there is little to no scintillation or dot bifurcation and therefore
no gross outliers. The new global energy functional can be expressed as,

J (W ) =

∫∫
f0 (∥∇W − θ∥2; cd) dxdy + α2

∫∫
f0

(
∥∇2W∥2; cs

)
dxdy + β2

∫∫
(W −WLSQ)

2
dxdy, (16)

The Euler-Lagrange Equations are again used to solve this system. For minimization with respect to the
wavefront value W ,

2β2 (W −WLSQ) =
2

c2d

[
∇zd · ∇W I −∇zd · θI + zd∇2W I − zd∇ · θ

]
− 2α2

c2s

[
∇2zs∇2W + zs∇4W

]
. (17)

Note that even though the representation of the robust M-estimators requires the introduction of additional min-
imizers to the objective functional, the penalty functions are only functions of their respective outlier process,z,
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and expressions for the optimal outlier process values are known in closed form. For the Leclerc penalty function
we have,

zd = exp

[
−∥∇W − θ∥22

2c2d

]
, (18)

zs = exp

[
−
(
∇2W

)2
2c2s

]
, (19)

which depends solely on their respective residual values. For minimization with respect to the wavefront estimate,
W , the optimality conditions in Equation (16) yield a biharmonic equation which can be solved using finite
differences to approximate the continuous differential operators. The approximations come in the form of kernels
that are convolved with their corresponding quantities to yield approximations of derivatives at some central point
(i, j) for which the Laplacian and biharmonic operators have a non-zero value. As convolution is a distributive
process, the discrete derivative operators can be separated, and the convolution can be performed as a linear
combination of two convolutions. The Laplacian can be approximated as convolution with the separable kernel,
KL,

KL =

0 1 0
1 −4 1
0 1 0

 =

0 1 0
1 0 1
0 1 0

+

0 0 0
0 −4 0
0 0 0

 . (20)

Similarly, the discrete Biharmonic can be expressed as,

KH =


0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0

 =


0 0 1 0 0
0 2 −8 2 0
1 −8 0 −8 1
0 2 −8 2 0
0 0 1 0 0

+


0 0 0 0 0
0 0 0 0 0
0 0 20 0 0
0 0 0 0 0
0 0 0 0 0

 . (21)

Note that the values surrounding the central point of the discrete Laplacian and Biharmonic operators can be
regarded as a first and second-order neighborhood average of points, respectively. For the Biharmonic operator, it
is apparent that the effect of incorporating spatial information beyond the limits of the first-order neighborhood
allows for the algorithm to better determine acceptable values of the wavefront that abide by the constraints
encoded within the objective functional. By substituting Equation (20) and Equation (21) into Equation (17)
and separating all terms containing the central point we have,

W (i, j) =

1
c2d

[
∇zd · ∇W I −∇zd · θI + 4zdW

I

L − zd∇ · θI
]
+ α2

c2s

[
4∇2zsWL − 20zsWH

]
+ β2WLSQ[

β2 +
4zI

d

c2d
− 4α2∇2zs

c2s
+ 20α2zs

c2s

] , (22)

where the overbars denote spatial averaging, and the subscripts L and H indicate the Laplacian (first-order) and
Biharmonic (second-order) spatial neighborhoods, respectively. The left-hand side of Equation (22) denotes the
current iteration, calculated by the previous iteration on the right-hand side.

4. PARAMETER OPTIMIZATION

4.1 Outlier Detection Parameters

Inspecting the outlier process equations, it is obvious to see the role that the outlier detection parameter plays
in determining what residual values present in the domain constitute outliers and to what extent. However,
specifying the control parameter values that accurately detect outliers can be tricky. In general, the control
parameter c can be initially fixed such that the robust estimation treats all points in the domain as fixed. The
value at which this occurs can be obtained from the second derivative test of the chosen estimator. When the
second derivative is positive, the convexity condition is satisfied,

∂2

∂x2
fL (x; c) > 0, (23)
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where x, in this case, is the value of the residual at a point. For the Leclerc function, convexity is achieved for
all points in the domain if and only if,

cconvex ≥
√
2max (|x|) , (24)

As in Black and Rangarangan,22 parameter continuation schemes may be employed to iteratively decrease the
initially set value of the outlier detection parameter, which in turn would slowly uncover outliers and handle
them according to the properties of the chosen robust estimator(s).

Figure 11. L-Hypersurface Gaussian Curvature for both weighting functions. Peak Gaussian Curvature occurs at 108

and 109 for β and α, respectively.

Although the parameter continuation method can be used for the current algorithm, there exists enough
knowledge about the physical measurement system to seek out a constant parameter in the case of SHWFS
measurements. For the data term, an outlier threshold may be directly derived as the maximum slope that is
measurable by a given AOI in a SHWFS,

θmax =
δL
2fL

− 2λ

δL
, (25)

where δL is the lenslet pitch and λ is the wavelength of the laser source. The second term on the right of
Equation (25) is the diffraction-limited spot size for a Gaussian beam; hence Equation (25) gives the maximum
local slope for which the spot stays within the boundaries of a given AOI. From here, the maximum measurable
wavefront Laplacian can be assumed to equal the maximum measurable slope divergence and may similarly be
expressed using central difference approximations as,

∇2Wmax = (∇ · θ)max =
1

2fL
− λ

2δ2L
, (26)

The significance of the intensity weighting functions is also seen here; for AOIs that contain scintillated or
bifurcated dots, the first central moment would never exceed the limit presented in Equation (25). Artificially
increasing the slope measurements would allow for the threshold to be exceeded, and therefore detected as a
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data outlier. Slope measurements that exceed the lenslet measurement range may then give rise to wavefront
Laplacian values that exceed the limit specified in Equation (26), which would in turn be detected as a spatial
outlier.

4.2 Regularization Parameters

As previously stated, the regularization parameters balance the relative importance of each term. For the case
of only one regularizing term, plotting the residual of the data term versus the residual of the regularizing term
for multiple regularization parameter values yields a curve that, in many cases, has a shape that resembles an L
(see Hansen,25 Figure 2). The optimal regularization parameter exists at the “corner” of this L-curve, and that
corner is the point of maximum curvature, again parameterized by the regularization parameter value. From
Belge et al.,26 this method was generalized to include multiple regularization parameters, where the optimal
set of regularization parameters exist at the point where the Gaussian Curvature of the now L-hypersurface is
maximized. Opting for the grid-search method instead of the iterative method developed in Belge et al.,26 the
L-hypersurface is presented in Fig.11. The optimal regularization parameters were on the order of 108 and 109

for β and α, respectively. While seemingly large, the magnitudes of the parameters are necessary to balance
errors in the data and regularizing terms.

5. RESULTS AND DISCUSSION

The algorithm was tested on a sample dot pattern from SHWFS data acquired in the University of Notre
Dame’s Mach 6 Quiet Tunnel. For this run, the total temperature, T0, was recorded at 455.37K, the total
pressure, P0, was recorded at 655kPa, and the back pressure, Pb, was recorded at 1.5kPa. More information
on the specifications of the Mach 6 Quiet Tunnel can be found in Lakebrink et al.27 The lenslet array had
a pitch of 0.0003m and a focal length of 0.0382m. Intensity-weighted slopes for both weighting functions are
shown alongside the unweighted slopes in Fig.12. It is clear to see where the shocks occur, as the intensity-
weighted slopes take larger values than the unweighted slopes in the same areas that contain heavily scintillated
or bifurcated dots. In the case of the slopes weighted by the overall intensity, the overall magnitude of the slopes
is increased, while only some isolated effects around the shock regions. On the other hand, slopes weighted by
second moment beam spread have a better ability to solely target the shock regions.

The outlier processes for the data term and the spatial term for both weighting functions are shown in Fig.13.
Recall that, for residual values close to unity, there is little to no penalty incurred and the estimator influence
approaches that of a least-squares estimator. As can be seen from the data outlier process using the overall
intensity weight, the shocks are correctly targeted, taking values relatively less than unity. However, due to the
non-uniform illumination, the calculated intensity weights are very noisy, which may be the cause of the much
thicker data outlier detection around the shock locations in this case. For the data outlier processes weighted
by the second-moment beam spread, the detected data outliers more precisely target only the shocks. Although
the second-moment intensity weighting function is still noisy, it is relatively less noisy than the overall intensity
weighting function, which may contribute to that precision. In both cases, the spatial outlier process shows
little to no deviation from unity. It should be noted that this doesn’t necessarily mean that there are no spatial
outliers in the solution, but that the robust functions did not detect any outliers. This may be traced back to
the specification of the outlier threshold from Equation (26), where further work is needed to ensure that the
threshold is properly specified. In this case, parameter continuation can be applied, where the value of cs is
incrementally decreased until spatial outliers are detected, but that is to be explored in future work.

The reconstructed wavefront for both weighting functions are shown in Fig.14. It can be seen that the regions
where shocks are expected qualitatively have a much sharper appearance in the robust reconstruction than in
the least-squares reconstruction. More concrete evidence of this can be seen in Fig.15, where horizontal and
vertical slices are plotted to compare both weighting functions’ ability to retain the sharp resolution typically
associated with shockwaves. In areas where the shock is expected to occur, the robust reconstruction shows
more resolute peaks with a much sharper gradient. Perhaps most promising is the difference in OPD around
the shock locations; in both cases, the robust reconstruction produces higher absolute values of OPD around
the shock locations, which is the theoretically expected result.8
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Figure 12. Comparison of unweighted slopes (top row) and intensity-weighted X and Y slopes for both overall intensity
weighting (middle row) and second-moment beam spread weighting (bottom row).

6. CONCLUSION

The problem of aero-optic wavefront reconstruction from SHWFS dot patterns in the presence of discontinuities
such as shocks was investigated. By taking a closer look at the effect that extreme flow phenomena have on
the intensity distribution within a lenslet AOI, it becomes clear that the assumption of tilt-only behavior within
the AOI is violated for significant enough changes in OPD. The standard reconstruction method’s utilization of
the first-central moment leads to slope values that are not accurately representative of the true change in OPD
across the AOI, which leads to a loss of accuracy of the reconstructed wavefront. To address this loss of accuracy,
it is necessary to incorporate additional statistical information from the lenslet AOI intensity distribution. As
such, two intensity weighting functions were formulated with the intent of encoding the effect of scintillation and
bifurcation into the reconstruction algorithm. The first of these functions is based on the total intensity within
a lenslet AOI, which considers the tendency of extreme flow phenomena to decrease the illumination within an
AOI. The second intensity weighting function is based on the second-moment beam spread, which has a more
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Figure 13. Data outlier process (left column) and spatial outlier process (right column) for both overall intensity weighting
(top row) and second-moment beam spread weighting (bottom row).

Figure 14. Reconstructed wavefront using Mach 6 Quiet Tunnel Data. A comparison is shown for both the overall intensity
weighting (top row) and second-moment beam intensity weighting (bottom row). The least-squares (left column) shows
smaller peak OPD magnitudes than the robust (middle column). The absolute difference (right column) shows that the
areas surrounding the shockwaves experience the most change in OPD.

concrete statistical relationship to the change in OPD within an AOI. Weighting the least-squares reconstruction
with either intensity weight leads to an overall increase in the OPD in the areas that contain shockwaves but does
nothing to address the thick shock structure that is not observed in the raw data. This effect in the data was

Proc. of SPIE Vol. 12693  1269318-16
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 11 Nov 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 15. 1D Slices in both x-direction (left column) taken at the 30th y-lenslet and y-direction (right column) taken
at the 5th x-lenslet for both overall intensity weighting (top row) and second-moment beam weighting (bottom row).

shown to be caused by the quadratic estimator, resulting in a “smoothing effect” around the sharp gradients of
the shockwave. This problem was exacerbated by the intensity weighting functions, which artificially increased
the slope measurements in those regions.

In order to address the short-comings of the standard SHWFS reconstruction algorithm, the quadratic esti-
mator was replaced by robust, non-convex M-estimators, which have the advantage of reducing the influence of
outliers over the rest of the solution. The Leclerc function was chosen for its ability to attenuate the influence of
extreme outliers to have no influence over the solution, preserving sharp gradients in areas where they exist. By
expressing the Leclerc estimator as a family of quadratics via the outlier process method, solution convergence
was guaranteed at the cost of introducing the outlier process as a new variable to minimize in the reconstruction.

In addition to the Leclerc estimator, two regularizing terms were added to assist in constraining the solution.
Both a spatial coherence constraint on the Laplacian of the wavefront and a 0th order coercive constraint were
added, yielding a global energy functional. Minimization was performed using the Euler-Lagrange method,
producing a biharmonic equation. Finite differences were then used to produce an iterative solution. The
L-hypersurface scheme was adopted as a sub-optimization routine to uncover the perfect set of regularization
parameters, while the physical measurement system was used to determine outlier detection thresholds.

The robust reconstruction for both intensity weighting functions was compared to the least-squares recon-
struction. It can be seen from the results that the robust reconstruction properly identified the oblique shocks as
outliers for both intensity weighting functions, which resulted in greatly improved resolution around the shock.
Selected horizontal and vertical slices of the wavefront revealed significantly increased OPD at the locations
where shocks occur, more so for the intensity weighting function based on the overall intensity. The outlier
processes for both weighting functions tells a similar story, with the outlier process based on the second-moment
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beam spread having a more precise outlier detection of shocks than that of the overall intensity. While the
results clearly demonstrate the algorithm’s ability to target and handle outliers on real data, it is still unclear
if the reconstructed wavefront is a more accurate representation of the true OPD than the least-squares recon-
struction. A proper analysis of this can be done using a simulated wavefront discontinuity with known phase. It
is also unknown if the choice of estimator or outlier detection parameter threshold was adequate to accurately
capture outliers. This is in-part due to the non-uniform illumination, which led to noise in the intensity weighting
functions. These questions are currently being explored for future works.
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