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Abstract 
 

A two-dimensional, weakly-compressible shear layer with M1 = 0.78, M2 = 0.15 was computed using 
COBALT, a commercially-available full Navier-Stokes flow solver. The computed velocity field results 
were then used to compute thermodynamic flow-field data using a weakly-compressible model (WCM) 
developed at the University of Notre Dame. Comparison of results showed very-good match between the 
pressure fields computed using the WCM with the COBALT results, but serious discrepancies between the 
density and temperature fields. The discrepancies between the WCM and the COBALT results were 
investigated using an energy analysis.  
 
 
 
Introduction 
 

Airborne optical systems that are designed for maximum field of regard typically 
encounter shear-layers associated with separated flow fields at large look-back angles. At 
compressible flow speeds, these shear layers become optically active, seriously degrading 
the far-field irradiance distribution of a laser beam that transits the flow. The impact that 
shear-layer flows have on the utility of airborne optical systems makes them one of the 
most important types of flow fields for aero-optic investigations.  

One of the first investigations directed towards determining the cause of the 
optical aberrations in compressible shear-layer flows is given in [1]. In [1] a “weakly 
compressible model” (WCM) was developed which combined the unsteady Euler 
equations with isentropic, adiabatic flow relations to determine thermodynamic flow 
properties from a pre-determined velocity field. The method was shown to be accurate for 
flows in which the shear-layer convective Mach number [2] was less than approximately 
0.45; these flows can be considered “weakly compressible” in the sense that, although 
density variations are present, compressibility effects are not strong enough to influence 
the development of the underlying shear-layer velocity field. The decoupling of the 
velocity field from compressibility effects enabled the use of an incompressible discrete 
vortex method (DVM) [3, 4] to compute physically-realistic velocity fields for use with 
the WCM. Together, the DVM/WCM computational models showed that the large-
amplitude aberrations caused by compressible shear layers were in large part the result of 
deep pressure wells associated with the vortical structures within the shear layer and their 
concomitant large-amplitude density variations. This result was a contentious outcome of 
the investigation, since previous studies suggested that the aberrations originated 



primarily from the difference in the indices of refraction of the two flows undergoing 
mixing. 

The conclusions of [1], and the accuracy of the WCM, have been demonstrated by 
the favorable comparison of DVM/WCM-computed results with aero-optic data 
measured in experimental shear flows [5, 6].  These experimental data consist, however, 
of optical data from which the density field can be inferred, and therefore provide only an 
indirect means of comparison with the temperature and density fields computed using the 
WCM. Further, the DVM, which was used to generate velocity fields for the WCM, is an 
inviscid computational method and, although shear layer development is primarily an 
inviscid process, the lack of modeling of viscous effects in the DVM/WCM models is 
still a limitation of the approach. Both of these limitations highlight the utility of 
comparing the WCM to a higher-level computational solution that includes viscous 
modeling. This paper describes a comparison of the WCM with COBALT, a 
commercially-available full Navier-Stokes flow solver  
 
 
Weakly Compressible Model 
 

The weakly-compressible model is designed to compute pressure, temperature 
and density fields from a pre-determined velocity field for “weakly compressible” flows 
in which development of the velocity field can be assumed to be decoupled from 
thermodynamic properties; for example, compressible shear-layers with low convective 
Mach numbers (cf below). The model is composed of the unsteady Euler equations, the 
ideal gas law, and an isentropic temperature relation: 
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The adiabatic static temperature distribution TAB is determined at each point in the flow 
using the pre-determined velocity field: 
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The solution is started by setting the initial guess for the pressure field as p(x,y) = p∝, 
after which Eqs.(1) to (4) are iterated to convergence. The model assumes that the two 



streams feeding the shear layer have the same total temperature TT, and the initial 
adiabatic temperature distribution TAB is computed using an assumed initial constant total 
temperature throughout the flow field. The final TT distribution of the converged solution 
can, however, vary throughout the flow field due to local unsteady pressure variations, as 
discussed in greater detail below. A flow chart for the WCM solution procedure is given 
in Figure 1. 
 
 

 
 

Figure 1:  Flow chart for Weakly Compressible Model 
 

Computational Shear-Layer Model 
 

A two-dimensional shear-layer flow was computed using COBALT, which is an 
implicit, unstructured, compressible Navier-Stokes flow solver [7]. The modeled shear 
layer had a high-speed Mach number M1 = 0.78, a low-speed Mach number M2 = 0.15, a 
freestream static pressure of one atmosphere, and a constant total temperature TT = 300 K 



for both the high- and low-speed flows. These parameters give a shear-layer velocity ratio 
r = U2/U1 of 0.19 and density ratio s = ρ2/ρ1 of 0.90, and were chosen to model realistic 
aero-optic flow conditions similar to experimental flows reported in [5, 6, 8]. The 
convective Mach number for the shear layer was computed using Eqs. (6), (7) [2] giving 
MC1 = 0.33; this Mach number is sufficiently low that the flow can be considered “weakly 
compressible” and is therefore suitable for comparison to the WCM.  
 

MC1 = (U1 – UC)/a2        (6) 

UC = 
a2U1 + a1U2

a1 + a2
       (7) 

The computational domain was designed to accurately model roughly the first 
0.8 m of the shear-layer development. The size of the domain was 3 m x 5 m which was 
estimated as sufficiently large to ensure that the solution would not be influenced by the 
fixed flow conditions at the domain boundaries. The domain was meshed using an 
unstructured triangular mesh, with the smallest mesh size chosen to accurately resolve the 
smallest eddies that were expected to occur in the computational solution. The smallest 
eddies occur near the origin of the shear layer and can be estimated as the convection 
length Λn corresponding to the initial shear-layer natural frequency fn: 
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where Ucn is the shear-layer convection velocity, Ucn = (U1 + U2)/2. According to [9], fn 
depends primarily upon the momentum thickness of the boundary layer feeding the high-
speed side of the shear layer, and can be estimated from linear stability theory using: 
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The initial shear-layer development was therefore established by defining an inlet 
velocity profile that modeled the boundary layer from an upstream splitter plate. The 
boundary-layer parameters chosen for the high-speed flow were boundary layer height 
δ = 5 mm and momentum thickness θ ~ 0.5 mm; these parameters matched 
measurements of the splitter-plate boundary layer made in the Compressible Shear-Layer 
Wind Tunnel at the University of Notre Dame [6, 8]. Using Eqns (8) and (9), these 
boundary-layer parameters give fn ~ 10 kHz, and Λn ~ 14 mm. To ensure that the smallest 
eddies would be resolved with a comfortable margin of safety, a minimum grid size of 
0.5 mm was used along the first 0.8 m of the computational domain. A diagram of the 
computational grid, including solution boundary conditions, is shown in Figure 2. The 
convention of flow from left to right with the high-speed flow at the top is maintained in 
all figures shown in this paper. 
 



 
 

   
Figure 2:  Computational grid and boundary conditions for shear-layer model 

                                                                                                                                                                              
 
Shear-Layer Velocity Field 
 
 The computational solution was run until starting transients had decayed, after 
which time-averaged velocity fields in the shear layer were computed. Figures 3 (a) and 
(b) show time-averaged and rms velocity profiles nondimensionalized by the shear-layer 
vorticity thickness δω, Eq. (10), at several locations within the computed solution. The 
figures show that the computational results closely match the profile shape for the 
canonical shear layer.   
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The vorticity thickness growth in the computed velocity field is plotted in 

Figure 4. The figure shows some nonlinearity in the growth of the computed δω for 
x > 0.6 m, which is near the end of the finely-meshed region of the computational 
domain. The figure includes a theoretical estimate for the δω growth [10] which compares 
well to the computational solution. Overall, the velocity field results in Figures 3 and 4 
show that the computed shear-layer velocity field compares reasonably well to canonical 
forms and theoretical predictions.  
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   (a)      (b)   

Figure 3:  (a) Nondimensional time-average and (b) rms velocity profiles in 
computed shear layer 
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Figure 4:  Shear-layer vorticity thickness development 
 

 
Comparison of Navier-Stokes Solution to WCM 
 
 The shear-layer velocity field computed using COBALT was used to compute 
pressure, temperature and density fields using the WCM, Figure 1, which were then 
compared to the thermodynamic results of the COBALT full Navier-Stokes solution. The 
vorticity field for the solution time step used in the comparison is shown in Figure 5, 
which shows several vortices within the comparison region. As shown in the figure, the 
comparison region was limited to x < 0.6 where the velocity field most accurately 
represents that for a canonical shear layer, Figure 4. 



 
 

Figure 5:  Vorticity field for solution time step used to compare COBALT and 
WCM  

 
 Pressure distributions over the comparison region computed using COBALT and 
the WCM are shown in Figure 6. The pressure fields show deep pressure wells at the 
locations of the shear-layer vortex cores shown in the vorticity field in Figure 5; this 
result agrees with the predictions in [1] of the existence of these pressure wells. A plot of 
the computed pressure distributions down the centerline of the computational domain (at 
y = 0) is shown in Figure 7. Overall, Figures 6 and 7 show very good agreement between 
COBALT and the WCM in terms of the computed pressure fields. 
 

 
 
   (a)      (b)   

Figure 6:  Pressure fields computed using (a) COBALT and (b) WCM 
 

 The almost exact match between the WCM pressure field and the results 
computed using a full Navier-Stokes solver validates the most contentious idea presented 
in [1], which is that deep pressure wells exist in the shear-layer flow field at the locations 
of the shear-layer vortices. The good comparison also supports the idea that the WCM 
can be overlayed on a pre-determined velocity field to accurately compute 
thermodynamic properties. Based on the good results of the pressure-field comparison, 
attention next focused on comparing the temperature and density fields. 
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Figure 7:  Pressure distribution along centerline of computational domain, at y=0. 

 
 Static temperature and density fields computed by COBALT and the WCM for 
the same velocity field are compared in Figure 8. The figures show that depressions in the 
static temperature and density also exist at the vortex core locations. The agreement 
between COBALT and the WCM is relatively good in the region of the vortex cores; 
however, the figure generally shows a significant difference between the two methods in 
the way in which the TS and ρ fields merge between the high- and low-speed flows. In 
particular, the COBALT solution shows very sharp, rapid changes in TS and ρ between 
the high- and low-speed flows while the WCM solution shows very gradual changes; this 
difference is noticeable throughout the flow but is particularly apparent in the braid 
regions between the vortices.   
 Optical path differences, OPD’s, were also computed from the COBALT and 
WCM density fields using: 
 

OPL = ∫ dyyxtn ),,(      (11) 
 
and 
 

OPD = OPL - OPL      (12) 
 
where 
 

n(t,x,y) = 1 – KGD ρ(t,x,y)    (13) 
 

In Eq.(13), a value of 2.25 x 10-3 kg/m3 was used for the Gladstone-Dale constant to 
model the propagation of 1 μm wavelength radiation in air. OPD distributions over the 
comparison region are shown in Figure 9. The OPD’s shown in the figure are marginally 
larger than OPD’s given for experimental studies reported in [5, 6, 8]. It should be noted 
however, that the freestream static pressure used for the computational results in Figure 9 
was significantly larger than for the experimental data in [5, 6, 8] and that, when the 



computational data were scaled to the same p∞ as the experimental data then comparable 
OPD’s were obtained. 

Figure 9 shows reasonably good comparison between the OPD distributions 
computed using the COBALT and WCM density fields, but an approximately 30% 
difference in the two OPD’s in regions that correspond to the braids between the shear-
layer vortices. As such, the differences in the density fields computed using COBALT 
and the WCM lead to significant differences in the corresponding estimates of the 
flowfield optical aberrations. 
 

 
 

Figure 8:  (a) Temperature and (b) density fields computed using COBALT, and 
using WCM (c and d).   

 
 
Energy Equation and Total Temperature 
 
 The good comparison between pressure distributions, but poor agreement between 
temperature and density fields for COBALT and the WCM suggested that an explanation 
for the discrepancy could be obtained from examination of the energy equation. The 
differences between the two solutions appear to be primarily caused by differences in the 
computation of the temperature fields, which is determined by the energy equation, 
whereas the density variations arise for the most part from temperature differences via the 
equation of state.  
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Figure 9:  OPD’s for COBALT and WCM solutions. 

 
 The total energy equation in differential form, with the work contributed by body 
forces neglected, is shown in Eq. (14). The terms on the left-hand side make up the 
substantial derivative of the total energy, that is, the rate of change of internal plus kinetic 
energy of a point moving with the flow. The source terms on the right hand side consist 
of, in order, the net heat transfer, the work of viscous forces and the work of pressure 
forces. Since there is no heat transfer across the boundaries of the computational domain, 
heat transfer only serves to smooth out temperature variations that are produced by other 
source terms within the flow itself. As such, heat transfer terms can be neglected from the 
energy equation since heat transfer alone cannot produce the sharp temperature gradients 
observed in the COBALT temperature field in Figure 8; in fact, heat transfer should 
produce the opposite effect of a smoothed-out temperature distribution. 
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Using the COBALT solution for the velocity field, the viscous work term was 

computed within the comparison region. As shown in Figure 10, the viscous work is 
almost nonexistent in the braid regions between the vortices; furthermore, if the path of a 
fluid particle is integrated over Figure 10, then generally only very small temperature 
variations are produced, and these occur only very close to the domain centerline, y=0. 
These two results show that the viscous work term can be neglected for the shear flow. 
The argument that viscous work is small for the shear-layer flow under investigation is 
further supported by the results of a matched-static temperature calculation of a similar 
shear-layer flow, presented later. 

With heat transfer and viscous work terms removed, the energy equation reduces 
to the form shown in Eq.(15): 
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This equation can be manipulated into a simple relation between temporal changes in 
total temperature and pressure [11]: 
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Equation (16) shows that total-temperature changes are localized to regions of large 
pressure variations. In particular, changes in TT should be expected to occur within the 
deep pressure wells associated with the shear-layer vortices; outside of the vortex cores, 
TT should be relatively constant. 

 
 

Figure 10:  Viscous work, ( )V⋅⋅∇ τ , within the comparison region.  
 
The total-temperature fields computed using COBALT and using the WCM are 

compared in Figure 11. As predicted by the energy-equation analysis given above, the 
WCM TT field is essentially constant, with only small localized depressions in TT 
occurring at locations corresponding to the deep pressure wells at the centers of the shear-
layer vortices, as indicated by Eq. (16). The COBALT TT field also shows regions of 
depressed TT corresponding to the vortex core locations; however, the COBALT TT field 
also shows generally very large differences and large gradients in TT across the shear 
layer region, presumably at the interface between the fluids in the high- and low-speed 
flows, and including the braids between the vortices. These large differences and 
gradients are more visible in Figure 12, which shows a three-dimensional view of the TT 
fields plotted in Figure 11. In fact, some of the largest TT gradients in the COBALT 
solution occur in regions that are considerably displaced in the y direction from the 
domain centerline, where both velocity and pressure gradients are small. These large and 
sharp variations across the shear layer cannot be explained by the energy-equation 
analysis given above. 

Further insight into the results can be obtained by examining the total temperature 
behavior in the braids between the vortices. As shown by Eq.(16), total temperature 



should be relatively constant within the braid regions where the pressure excursions are 
small, giving: 

 

TT = TS + 
PC

V
2

2

= constant    (17) 

 
Figure 13 shows static-temperature TS and kinetic-energy V2/2CP distributions along two 
cuts through the shear layer at locations corresponding to the braids at x = 0.37 m and 
x = 0.5 m. The figure shows that the kinetic energy variation (and concomitantly, the 
velocity variation) through the braids changes very smoothly between the high and low-
speed flows. The figure also shows that the corresponding static-temperature variation 
through the braid for the WCM solution is also very smooth, and that TS changes in such 
a way that the addition of TS and the kinetic energy produces essentially constant TT 
(except for a small “hump” caused by the pressure variation in the braid, as shown in 
Figures 6 and 7). On the other hand, the COBALT static temperature distribution through 
the braid regions changes very abruptly, and it is apparent from Figure 13 that it is the 
abrupt changes in TS across the braid region that produce the abrupt changes in TT in 
Figures 11 and 12.  

 

 
 
   (a)      (b)   

Figure 11:  Total temperature distributions computed using (a) COBALT and (b) 
WCM  

 
 



 
 
   (a)      (b)   

Figure 12:  Relief view of total temperature distributions computed using (a) 
COBALT and (b) WCM  

 
 

 
 

   (a)      (b)   
Figure 13:  Kinetic-energy and static-temperature contributions to the total 

temperature along cross-stream cuts in shear-layer braids at (a) x = 0.375 m, and (b) 
x = 0.5 m 

 
 
Simulated and Experimental Schlierens 
 
 The differences between the COBALT and WCM solutions are in the computed 
temperature and density fields. These discrepancies are difficult to resolve using 
experimental data since it is difficult to directly measure temperatures in compressible 



experimental flows. Instead, the computational data has been compared to optical 
measurements where the density field can be inferred from, for example, integrated 
optical path differences as shown in Figure 9. Another optical measurement technique, 
which produces spatially resolved information on the density field, is Schlieren 
photography. 
 Simulated Schlieren photographs of the computational flow field are shown in 
Figure 14 for the COBALT and WCM solutions. The simulated Schlieren figures were 
computed as the gradient of the computed density fields, with the gradient direction and 
figure shading chosen to produce an effect similar to experimental photographs shown in 
Figure 15. The simulated Schlierens for the COBALT and WCM solutions show distinct 
differences, primarily that the WCM Schlieren shows strong density gradients around the 
shear-layer vortices only, while the COBALT Schlieren shows strong gradients in the 
braid regions as well; these differences correspond to the differences in the computed 
density fields already shown in Figure 8. 

 
 

   (a)      (b)   
Figure 14:  Simulated Schlieren photographs of density fields computed using        

(a) COBALT and (b) WCM  
 
 Figure 15 (a) shows an experimental Shlieren photograph for a M = 0.6 
compressible shear layer with matched TT streams,  similar to the type of flow modeled in 
this investigation, and in (b), a low-speed incompressible shear layer that mixes two 
fluids with two different indices of refraction. The difference between these two 
Schlieren photographs is important in the sense that in Figure 15(a) density variations are 
produced by compressibility effects while in (b) the shear layer merely mixes two 
streams with initially different densities. Comparison of Figure 14 to Figure 15 shows 
that the WCM solution shows much more similarity to the experimental M = 0.6 shear 
layer with matched TT streams, while the resolved braids in the COBALT Schlieren 
appear more similar to the incompressible mixing-layer Schlieren in Figure 15(b). 



 
 

   (a)      (b)   
Figure 15:  Experimental Schlieren photographs for  (a) a M = 0.6 shear layer with 
matched TT in the upper and lower flows, and (b) a low-speed incompressible shear 

layer that mixes two fluids with different indices of refraction. 
 

 
 
   (a)      (b)   

Figure 16:  COBALT solution for (a) static-temperature and (b) density fields for 
shear layer with matched TS and all other boundary conditions the same as shown in 

Figure 2.  
 
Shear Layer with Matched Static Temperature 
 

The Schlieren photographs and the total temperature arguments presented above 
show that the COBALT solution gives the appearance of mixing two fluids of different 
TS, without accounting for the exchange of energy between kinetic and internal energies 
that maintains constant TT in the braid regions according to Eq. (17). An alternate 
explanation is that viscous work is an important source of local temperature variations in 
the COBALT calculation, and that the WCM may be incorrectly neglecting the viscous 



work terms. This possibility was investigated by computing a shear-layer solution for two 
streams with matched static temperatures TS. The computational grid and boundary 
conditions for the solution were exactly the same as for the matched-TT solution shown in 
Figure 2, except that the static temperature of the upper and lower flows were both set 
equal to 300 K.  

 
   (a)      (b)   
Figure 17:  (a) Contour and (b) relief views of COBALT TT field for shear layer with 

matched TS.  
 

 
 

Figure 18:  Simulated Schlieren for COBALT solution for shear layer with matched 
TS.  

 
 The COBALT solution for TS and ρ for the matched-TS solution is shown in 
Figure 16. Although the figure shows localized TS and ρ excursions in the vicinity of the 
shear-layer vortices, in general, the TS and ρ fields are smooth with only gradual changes, 
particularly within the braid regions. However, if the sharp TS and ρ variations in the 
matched TT solution were caused by localized heating by viscous work terms, then one 
would expect to see similar localized heating in the matched TS solution in Figure 16. 
This is because viscous work arises from the velocity field, and the velocity fields for the 
matched TS solution has similar characteristics to the velocity field for the matched TT 



solution. One possible explanation is that localized heating from viscous work is exactly 
offset by adiabatic cooling via Eq.(17) thus producing the smooth TS field of Figure 16; 
however, this would be very coincidental. Instead the much more likely explanation is 
that viscous work in the COBALT solution is negligible, and that the simple mixing 
appearance of the COBALT solution for the matched TT solution is masked in the 
matched TS solution because the two flows have the same TS. The TT field for the 
matched TS solution is shown in Figure 17, which shows gradual changes in the TT 
distribution, particularly in the braid regions. Figure 18 shows a simulated Schlieren 
computed using the density field from the COBALT matched TS solution; this simulated 
Schlieren is very similar in appearance to the simulated Schlieren computed using the 
WCM solution for matched TT in Figure 15, and further illustrates the absence of 
localized heating due to viscous effects in the COBALT solutions. 
 
 
Conclusions 
 
 The pressure fields computed using COBALT, a full Navier-Stokes flow solver, 
show the large pressure wells and concomitant density depressions at the shear-layer 
vortex core locations that were predicted in [1]. These results further validate the analysis 
given in [1] showing that the primary mechanism for optical aberrations in a weakly-
compressible shear layer are pressure and density variations associated with the shear-
layer vortices. 

The velocity field computed using COBALT was also used to compute pressure, 
temperature and density fields using the WCM. While the pressure fields computed using 
the WCM and COBALT showed very good agreement, the temperature and density fields 
showed significant discrepancies. In particular, the COBALT solution showed sharp 
gradients in temperature and density at the boundary between the high- and low-speed 
flows; this sharp delineation between the high- and low-speed flows resembled the kind 
of density field that is produced by simple mixing of two fluids of different densities, as 
if temperature was treated as a passive scalar with adiabatic heating and cooling effects, 
Eq. (17) neglected. Similar effects have been noticed in other investigations of weakly-
compressible shear layers that used other compressible Navier-Stokes flow solvers. 
Comparison of the two methods using the energy-equation showed that the sharp changes 
in temperature evident in the COBALT solution could only be produced by localized 
heating due to viscous forces; however, an analysis of the velocity field showed that 
viscous work was small, as did a computation with matched static temperatures. As such, 
it is difficult to give a physical explanation for the large TS and ρ gradients that appear in 
the COBALT solution, although further investigations should be carried out.  
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