
36th AIAA Plasmadynamics and Lasers Conference   AIAA-2005-4772  
6-9 June 2005, Toronto, Canada  
 
 

                                                          

Shear Layers and Aperture Effects for Aero-Optics 

John P Siegenthaler*, Stanislav Gordeyev †, and Eric Jumper‡

Hessert Laboratory, University of Notre Dame, Notre Dame, IN, 46446-5684, USA 

This paper examines the effect of a finite aperture on wavefronts, especially with regard 
to aero-optic distortions from a shear layer.   When the net deflection of a beam is corrected 
in real time to bring a beam on target, a common practice in optic applications even if no 
other corrections are performed, this removal of the off-target tilt and the finite aperture of 
the beam act as a spatial filter.  This restricts the tip-tilt correction and the wavefront 
correction to separate frequency ranges, causing the rms magnitude of the remaining 
distortion to be corrected to vary with aperture size.  It has also been found that for a shear 
layer, aperture size is a key factor in scaling the severity of optical distortions, and it is likely 
to be a key component in scaling other types of optically-aberrating flows. 

1. Nomenclature 
a = local speed of sound 
AO = Adaptive Optics 
Ap = aperture length 
C =  amplitude of oscillation 
DM = Deformable Mirror 
f = frequency 
fd = dominant frequency at a location 
fT/T = maximum T/T frequency filtered 
g,h = generic functions   
KGD = Gladstone-Dale constant, 0.000227 m3/kg 
L = length scale 
M = Mach number 
OPD = Optical Path Difference 
OPDrms = root mean square of the OPD over an aperture 
OPL = Optical Path Length 
p = pressure 
ru = velocity ratio U2/U1
s = density ratio ρ2/ρ1
T = temperature 
T/T = Tip-Tilt 
u = velocity 
U1,2 = sheer layer flow velocities 
UC = convection velocity of the shear layer 
αx = deflection angle of a beam in the x direction 
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δ = boundary layer thickness 
δvis = thickness of the shear layer as estimated by flow visualization. 
Δt = time step 
Δx = spatial distance of flow convection in time Δt 
Λ = streamwise length of large structures in the shear layer 
ρ = density 

2. Introduction 
HEN a laser beam with an otherwise planar wavefront is projected through a variable-index-of-refraction 
turbulent flow, its wavefront becomes aberrated.  To the extent that the wavefront is aberrated across the 

beam’s aperture, the beam’s ability to create a high-intensity spot at the target in the far field is hampered.1  An 
adaptive-optic (AO) system can be used to measure and then compensate for the aberrations that are to be imprinted 
on the beam’s wavefront by imposing a conjugate wavefront figure on the beam prior to projecting it through the 
aberrating medium so that in a perfect case the beam emerges unaberrated.2  In practice the conjugate is imposed in 
at least two stages.  First, the aberration must be measured.  Because of the linear nature of optics, the aberration 
that will be imposed by a beam propagating through the aberrating medium in one direction can be determined by 
measuring the aberration imposed by an otherwise near-planar wavefront propagated through the medium in the 
opposite direction.  Presumably this would be some sort of return from the target.  In the case of a free-space 
communication system, the target is cooperative and can emit a diverging beam that will arrive at the entrance pupil 
of the beam director as if it were a pinhole source at the target.  The wavefront from this far-field return then enters 
the adaptive-optic beam train.   

W 

One realization of the layout of the adaptive-optic beam train is the Notre Dame adaptive-optic system designed 
by Xinetics in cooperation with the Albuquerque Boeing, SVS group.  A schematic of the system is shown in Fig. 1.  
What can be noted in Fig. 1 is that the first correction 
element the incoming beam encounters is a tip-tilt (T/T) 
mirror; an enlargement of the components of the T/T 
mirror is shown in Fig. 2.  As implemented, this portion 
of the system makes use of technology that has long 
been available for maintaining alignment between 
multiple optical benches and in the present case is, in 
fact, used to maintain the alignment of the incoming 
beam into the remaining elements of the system.  The 
enlargement in Fig. 2 shows one of the critical 
placement considerations of the T/T mirror; the T/T 
mirror is re-imaged on the deformable mirror (DM) 
which, in effect, adds an ability of the DM to tip and tilt.   

Figure 1. Schematic of Notre Dame Adaptive-
Optic System cooperatively developed by Xinetics 
and Boeing SVS. 

Note also that the T/T mirror is controlled by a 
separate, in this case analog, stand-alone processor.  The 
beam is focused onto a position-sensing device, which 
in this case is a quad cell.  Tip-tilt mirrors can be made 
to have relatively high bandwidth so that one can 
presume that the remainder of the AO system need not 
contend with removing overall tip and tilt.  In fact, 
essentially all modern beam-director systems 
incorporate T/T mirrors on their optical benches even 
when no other AO system components are present.  It 
should be noted that we have also incorporated near-
stationary correction components into our AO system 
for some experiments to remove mean aberration. 

Because of the ubiquitous use of T/T mirrors, when 
we make time-resolved wavefront measurements to 
characterize aero-optic environments, we typically 
remove both tip and tilt and time-averaged mean 
aberration leaving only the unsteady component over the 

 
Figure 2.  Detail of the Tip-Tilt Compensation 
portion of the system. 
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aperture.  It is important to note that the aperture itself imposes a spatial filter on the overall aberrating character of 
the medium.  Because the aberrations are due to turbulent flow, which by definition is convecting, this spatial filter 
is associated with a concomitant temporal frequency.  Thus, low frequency aberrations with coherence length Λ, and 
a convection velocity Uc, will result in low-bandwidth tip and tilt that a T/T mirror will remove.  As an aside, this 
fact allows facilities that might otherwise be presumed to be unacceptable for aero-optic testing to be usable by 
simply removing tip and tilt from each wavefront frame. 

3. Shear Layers 
Shear layers, also known as mixing layers, occur at the boundary between two parallel flows of different fluids, 

or even the same fluid moving at different velocities.  The transfer of momentum in the vicinity of the boundary 
causes this boundary region to grow in size as it convects downstream.  Kelvin Helmholtz instability produces 
ripples in the boundary along its span that also grow and 
contribute to the growth of the layer region.  These 
perturbations eventually roll up into vortical structures that 
grow, pair, and merge as the shear layer grows.3

When there is a large difference in relative velocity 
between the two flows, the low pressure well found in the 
center of these structures, also known as rollers, can be 
quite pronounced.4 This drop in pressure is accompanied 
by a drop in density, with its concomitant change in index 
of refraction.  This makes these structures of interest from an optical standpoint.  While there are many elements in 
a compressible flow of this sort that can produce optical distortions, the low pressure wells associated with these 
rollers are likely to be the most significant contributor in that regard. 

δvis

Λ

Figure 3. The classic shear layer. 
(Konrad, 1976) 

Shear layers grow linearly in thickness with distance from their starting point.  There are multiple definitions 
for the thickness of a shear layer, such as momentum thickness and vorticity thickness, and the growth rate of the 
shear layer is less well understood for compressible flows than for incompressible and weakly-compressible shear 
layers..  In these experiments, the primary method for estimating the layer thickness was by visual observation of 
the vortical structures in the flow.  The literature5 reports that this vorticity thickness (δvis) can be estimated from the 
following empirical relation:  
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where ru is velocity ratio (U2 / U1) and s is the density ratio (ρ2 / ρ1) of the two flows making up the shear layer.   
 For this optical study, the dimension in the layer of primary interest is not the thickness, but the spacing 
between rollers. (Λ) This coherence length is related to δvis by yet another empirical constant.  The literature reports 
that this ratio of Λ/δvis, varies from 1.5 (Ref 6) to 2 (Ref 7).  In observing a flow passing a point of measurement, the 
average length of a repeating structure can be found by the relationship  
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where fd is the frequency or average frequency at which the structure is seen to pass by the point of measurement.  It 
should be noted that Λ differs from Λn reported in Ref 8, where the frequency in Eq. (2) is replaced with fn.  That 
frequency is biased towards larger structures by the fact that the larger structures produce a larger-amplitude optical 
response. 

4. Small Beam Aero-Optic Measurements 
Optical distortions can be thought of in terms of deflection angles for isolated rays of light, or as wavefronts.  A 

wavefront is a sheet of light, with the same wavelength and phase throughout.  A planar wavefront is a flat sheet of 
this sort, and models what one might expect in a collimated laser beam of some non-zero aperture (Ap).  A 
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wavefront is a more complete expression of the optical effects of a flow, as a wavefront is composed of all the rays 
passing through the flow from that direction or source.   

While a wavefront contains all the relevant aspects of the light and distortions to the light passing through an 
aberrating flow or medium, there is such a thing as having too much information. Interferometry and phase diversity 
can measure a wavefront in its entirely, and some other types of sensors can be built with impressive spatial 
resolution.  However, for many applications, far less information is better.  For real-time applications dealing with a 
time-varying system, there is often a trade-off between how rapidly one can sample and process data and the 
amount of data one can sample.  The data in this paper was acquired with a Malley probe,10 which uses two beams 
that are narrow, relative to the length scale of structures in the flow, and so are deflected as rays rather than distorted 
as wavefronts.  A detailed description of the components and reconstruction methods for optical wavefronts using a 
Malley probe can be found in Ref 10. 

By definition a wavefront is a locus of points of 
constant phase.11  As shown in Fig. 4, as an initially 
planar wavefront for a collimated laser beam propagates 
through a region of variable index of refraction, portions 
of the wavefront become advanced and retarded from the 
wavefronts mean position.  If a plane is drawn normal to 
the wavefront’s mean propagation direction, the beam’s 
phase along that plane will be greater or less than the 
phase of the wavefront at the mean position.  It is the 
phase difference over this plane that is referred to as the 
beam’s aberration.  According to Huygens’ principle the 
wavefront can be replaced by pinhole sources along its 
surface, each emitting spherical waves and the wavefront 
can be redrawn at some distance by connecting surfaces 
of constant phase from the pinhole sources.11  This leads to the result that wavefronts propagate normal to 
themselves and is the basis for geometric optics.  As a consequence, a ray, everywhere perpendicular to the 
wavefront can be traced along the wavefronts propagation path as shown in Fig. 4.  The angle at which the ray 
emerges from the aberrating medium, being normal to the emerging wavefront will have an off-axis angle, shown as 
-αx in Fig.4, which is equal to the wavefront’s x-gradient.   

Hartmann was the first to realize that this fact could be used to measure the figure of wavefronts.12  He placed 
an opaque, perforated plate in front of the aberrated wavefront with a photographic plate at a known distance from 
the perforated plate.  By exposing the photographic plate first to an unaberrated beam and then to the aberrated 
beam he was able to measure the off-axis displacement of beams emerging from the perforations.  Knowing the 
distance between the plates he could determine the angles and thus the wavefront slopes at each perforation 
(measurement location) and then through integration determine the wavefront’s aberrated figure.  Similar 
measurements can be made by passing small-aperture beams through the aberrating medium.   

αx

-αxAp

Figure 4. An optical ray as part of a wavefront 
through a distorting flow field. 

Malley et. al. were the first to recognize that when the aberrating medium is a turbulent flow, the aberrations 
caused by the convecting flow structures will, convect as well.9  Thus, a single beam propagated through the flow 
could be used to measure a continuous time series of wavefront slopes as the wavefront convects by the 
measurement location.  The Malley principle has been used at Notre Dame to develop a series of wavefront-
measurement devices.13,14,15  To the extent that the flow can be treated as slowly varying, the Taylor frozen flow 
assumption can be used to compute wavefronts up and downstream of the measurement location, which are 
reasonably accurate for some distance up and downstream.  By propagating two small-aperture, closely-spaced, 
beams through the flow, both the wavefronts slope and its convection speed can be determined.  

 )()( t
dx

tdOPL
xα−=  (3) 

In order to integrate the slope to produce a running time series of OPL(t), the velocity is required as  

 ∫ ∫== dtU
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where Uc = dx/dt.  By knowing the distance between beams and cross-correlating the beams to find the delay time 
between the two beams’ signals, Uc can be determined,10 so that  

  (5) ∫ −=
t

t
cxx dUtOPL

0

)()( ττα

From these equations and relationships, an approximation of the OPL over a portion of the flow can be 
reconstructed from spatially coarse data, or even a single point of measurement. An important aspect of wavefronts 
that becomes apparent in this form of reconstruction is the relationship between length scale of the aberrations and 
the amplitude of the resulting OPD.  If αx were a pure sine wave, then the OPL would be  
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By Eqs. (2) and (6), the amplitude of OPLs associated with deflection data of a given amplitude will be 
inversely proportionate to the frequency of that deflection and directly proportional to the length of the structures. 

The OPL produced by Eq. (5) can be made to any length by setting the upper and lower bounds of the integral.  
However, the measurement technique is only valid if the frozen flow assumption is valid, and that is only true for 
regions close to the points where the beam passes through the flow.  As one extrapolates an OPL further upstream 
or downstream from a location of measurement, the data becomes less valid with increasing distance from that 
point.   

5. Aperture Effects 
While this technique of reconstruction and estimation 

is only accurate over short distances, real-world 
applications involve beams of a finite diameter, and 
measurements relating to these applications only need to 
be accurate over that area.  The finite aperture also has an 
effect on those structures in the flow that will produce 
distortions within the boundaries of the beam’s wavefront 
over the aperture that will deflect or tilt the beam as a 
whole.   

Figure 5 shows two wavefronts, both aberrated into 
the form of a sine wave, with the same amplitude, over the 
same length of aperture.  In Fig. 5a, the period of the 
wave is a bit longer than the aperture.  A linear fit to this 

wavefront over the aperture shows a significant degree of 
net tilt, which, as discussed earlier, would deflect the 
beam.  Removing this tilt to place the beam on target also 
reduces the amplitude of the variations in the wavefront in 
this case by more than 50%.  Figure 5b shows the effects 
of T/T removal when the spatial scale of the distortions is 
smaller than the aperture.  In that case, there is very little 
net tilt and tilt removal has little effect on the magnitude 
of the aberration. 
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Figure 5. Examples of the spatial filter effect 
produced by an aperture and tip-tilt removal. 
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Figure 6. Results for simulated α=sin(ωt) 
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A finite aperture of a physical beam acts as a spatial filter, separating the distortions caused by larger-scale 
structures from those caused by smaller-scale structures. If Ap/Λ << 1, then T/T deflection becomes the only 
significant effect of distortions on that length scale.  This would seem to indicate that the most severe wavefront 
distortions come from distorting structures in the flow that are smaller than the aperture.  However, there is a 
countervailing effect seen in the wavefront reconstruction algorithms and formulas that produces OPD variations of 
greater amplitude for aberrations of the largest length scales.  This is addressed in Eq. (6) and the associated text.   

Figure 6 was generated by using a pure sine function of extended coherence length as the beam deflection, α.   
Each point is the time averaged rms OPD (OPDrms) for a fixed period of α and a fixed Ap.  Each set of points shares 
a common value for Ap while Λ varies.  For an infinite aperture, the average OPDrms grows linearly with Λ, as 
indicated by Eq. (6).  For a finite aperture, this is true only for Λ < Ap.  For Λ > Ap, OPDrms tapers off 
asymptotically as Λ increases.   

This filter effect can also be found and expressed analytically.  For a wavefront or other input of the form 
g(x,t), OPDrms, as a function of time over an aperture with T/T removal, will be: 

 ( ) [ ]∫ +−=
Ap

prms dxtxBtAtxgtAOPD
0

2))()((),(,  (7) 

where A and B in Eq. (7) are the coefficients of a linear fit to the 
overall tilt and piston present in  g(x,t).  It just so happens that 
finding values for A and B to minimize the function inside the 
square root in Eq. (7) is the basis for performing such a linear 
fit, which explains why T/T removal tends to reduce the 
magnitude of aberrations.   

If g(x,t) is set to a sine function:  
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and the resulting OPDrms is averaged over time, then that 
average can be compared to the OPDrms for an infinite aperture 
with no T/T removal.  This ratio can be considered the gain of 
the spatial filter for that length in the distorting structures, 

Figure 7. Spatial filter normalized frequency 
response 
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Figure 7 shows the frequency response of this spatial filter in terms of a nondimensional frequency, Ap/Λ. As 
can be seen in the Fig. 7, this is a high-pass filter, screening out aberrations with a length scale larger than the 
aperture.  This filter gain can be found analytically from Eq. (7) for a sine signal given in Eq (8), and has the form 
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This filtration effect has special relevance for shear layers.  Two of the defining characteristics of shear layers 
are the presence of coherent structures in the layer, and that the layer and structures grow linearly as they progress 
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downstream.  Therefore, one would expect the optical distortions to have a characteristic frequency and length scale 
at each point in the flow, and for that length scale to grow linearly with position downstream in the shear layer.   

This also has significance for the engineering of T/T removal systems.  The bandwidth required for this system 
corresponds to the frequencies removed by this filter function.  Looking at Fig. 7, this corresponds to frequencies 
lower than Ap/Λ = 2.5.  Let us call this frequency fT/T.  By Eq. (2) 

 
p

C
TT A

Uf 5.2/ =  (11) 

The results in Fig. 6 show a similarity in the curves traced for differing values of Ap, with both the maximum 
value for OPDrms and the value of Λ at which that maximum is seen having a linear relationship with Ap.  Both OPD 
and structure size are in units of length, as is the aperture, 
so it makes sense to non-dimensionalize those values by 
Ap.  Fig. 8 shows that this causes all the curves to 
collapse onto one curve. 
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Figure 8. Non-dimensionalized results for 
α=sin(2πft)

This result is promising, as scaling laws are valuable 
tools in applying laboratory results to field applications, 
but flows that produce optical distortions in the form of a 
perfect sinewave are hard to come by in the physical 
world.  On the other hand, suggestions of this scaling, 
and a rules of scaling aero-optics problems in general, 
can be found from basic theory.  

The preceding text defined OPL in terms of the 
deflection angles often measured and used to reconstruct 
OPL.  The more proper definition of OPL is the integral 
of the index of refraction along a beam’s path, which for 
air is a function of density. 

( )( )∫ ∫ −+=′+= dsKdsxnxOPL GD 01)(1)( ρρ  (12)  

From here it follows that the magnitude of variation in the OPL, which is OPD, will be proportional to the 
integral of density variations through the flow field.  For isentropic flows, changes in density are proportional to 
changes in pressure and inversely proportional to changes in temperature.  The pressure drop inside a vortical 
structure, such as the ones seen in shear layers, is approximately proportional to the square of their characteristic 
velocity.  Thus, one can find an extending chain of equalities and proportionality, 
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where UC = (U2-U1)/2 and is the characteristic velocity of the structures, a is the local speed of sound, and MC is a 
convective Mach number.  OPD, as noted above, is proportional to an integral of Δρ, which in turn will be 
proportional to the magnitude of that variance and the length over which that variance is integrated.  In Eq. (1), the 
diameter of the rollers was chosen as the definition of layer thickness for the shear layer.  Thus, 
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From Eq. (1), δvis is proportional to x and Λ is proportional to δvis. 
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Thus, the OPDrms tends to grow linearly with Λ, as was the case with the model problem in Eq. (6) and the 
infinite aperture case in Fig. 6.  If flow conditions are fixed, meaning MC and ρ are constants, then Λ is simply 
proportional to x.  Thus, the shear layer has a characteristic structure size, Λ, that is linearly growing with position, 
and thus scaling x by Ap should proportionately scale Λ.  If the finite aperture and T/T removal truly act as a filter 
does over all frequencies, regardless of the mix of those frequencies in the input, then all the salient point in the sine 
function test that make the scaling work should be present in a physical shear layer and optical system.  Thus, for 
fixed flow conditions, there is reason to hope that  

⎟
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xf

A
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 (16)  

It is left now to examine some actual optical data to see if this does apply. 

6. Experimental Setup 
The experiments for this study were performed using the Notre Dame Weakly-Compressible Shear Layer 

(WCSL) facility, shown in Fig 8, located in Notre Dame’s Hessert Laboratory for Aerospace Research. 
The WCSL facility consists of an inlet nozzle and test section mated with one of Notre Dame’s three transonic 

in-draft, wind-tunnel diffusers.  The diffuser section is attached to a large, gated plenum.  The plenum is, in turn, 

connected to three Allis Chalmer 3,310 CFM vacuum 
pumps through a sonic throat to prevent unsteady effects 
from propagating upstream from the pumps.  Depending on 
the gate-valve arrangements, each of these pumps can be 
used to power separate diffusers, or they can be used in 
combination to power a single diffuser. 

 

Low Speed Flow

High-Speed 
Flow 

Malley Probe 
Beams 

 
Figure 8. Notre Dame Weakly-Compressible 
Shear layer facility 

Figure 9. Malley probe positioning 

Being an in-draft tunnel, the feeding source is the room total pressure and temperature.  The test section is fed 
from a 104-to-1 inlet nozzle directly from room total pressure on the high-speed side.  On the low-speed side, room-
total-pressure air is first passed through a settling tank with a “quiet valve” consisting of a bundle of pipes that the 
flow is forced to pass through at high speed.  This produces a loss in total pressure, while keeping its total 
temperature the same as that of the room air drawn into the high-speed side. 

In this set of experiments a Malley probe10 was used to assess the optical aberrations. In the present case, the 
Malley Probe’s two laser beams were directed through the test section from below, as shown in Fig. 9.  All data was 
filtered to prevent aliasing and to remove low-frequency effects of tunnel vibrations. 

7. Physical Results 
The data presented here is for the shear layer running with Mach-number values of 0.77 and 0.06 for the high-

speed and low-speed flows, respectively.  At the pressure and temperature conditions in the test section this 
translates to velocities of approximately 260 m/s and 35 m/s, with a convection velocity for the shear layer between 
them of 148 m/s. By Eq. (1), this indicates a δvis growth rate of approximately 0.25.  The predicted growth rate for Λ 
ranges from 0.375 to 0.5, depending on which recommendation for this relationship is used.6,7
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Unlike the theoretical case explored in section 5, this 
physical shear layer does not produce optical aberrations in the 
form of a pure sine function.  However, as can be seen in Fig. 10, 
there is a peak, albeit broad, seen in the power density spectrum 
of the beam deflection data, indicating at least some periodicity in 
the data.  This peak moves to lower frequencies as the 
measurement location is moved downstream.  For this study, the 
characteristic frequency was chosen as the frequency at which 
this peak reaches its maximum value, as this corresponds most 
closely to the methods and definitions associated with δvis.7  As 
mentioned earlier, other optical studies use a weighted average of 
this spectrum.8

 Figure 11 shows the peak frequency of optical disturbances 
in the shear layer as a function of position downstream from the 
origin of the shear layer.  Figure 12 shows the structure length 
estimated from the frequencies in Fig. 11 and Eq (2).  The trend 
does appear linear, which is consistent with the arguments leading 

to the scaling relation of Eq. (16).  The line in Fig. 12 represents a value of 2 for Λ/δ
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Figure 10. Power density spectrum for 
deflection data recorded at 13.4 cm.

vis, which is the maximum value 
for this ratio found in the literature referenced earlier.7  
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Figure 13 shows the time averaged OPDrms (T/T removed) at a set of measurement locations. Each set of points 
in this figure represents the OPDrms as calculated for a different size of aperture.  Smaller apertures filter out longer 
wavelengths, and so have lower values of OPDrms in the figure.  An aperture of 300 cm can effectively be 
considered an infinite aperture, and for that aperture size, OPDrms grows almost linearly with position, as it did in 
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the simplified test shown in Fig. 6.  Also note that from Fig. 12, Λ reaches 5 cm in length at a position somewhere 
around 11 cm, and in Fig. 13, the curve made up of OPDrms values generated with a 5 cm aperture begins to level off 
at about that point.  

From the results shown in Fig. 6 one might expect the curves to fall off at downstream positions where the 
characteristic structure length seen in Fig 12 is larger than the aperture.  However, as can be seen in the power 
density spectrum for the data in Fig. 10, the data includes high frequency deflections as well as the lower 
frequencies associated with the pressure wells in the rollers.  This may be caused by smaller irregularities and 
vortices that roll up into the larger structures; however, it is more likely that it is due to the boundary layer forming 
between the upper surface of the test section and the high speed flow.  The spatial filter of the aperture does not 
remove these smaller scale optical distortions.   

Figure 14 shows that despite these differences, the same practice of non-dimensionalization shown in Figs. 6 
and 8 and Eq. (16) applies to the experimental data. 

That the scaling law holds true for the experimental 
results indirectly suggests that the filter function shown in 
Fig. 7 and Eq. (10) also holds true, but a more direct 
demonstration can be made.  There are difficulties in 
generating a power spectral density function for apertured 
OPDs from Malley probe data, as there are few points in the 
aperture to work with.  However, it is possible to generate an 
apertured OPD for each time step of the recorded data, record 
the slope of the tilt removed, and generate a psd of that tilt.  
If the T/T removal does indeed filter out frequencies from the 
OPD, then the dominant frequencies of the tilt should be the 
ones removed by that filter.  Figure 15 shows the T/T PSD 
based on the data for the PSD in Fig. 10 and a 5 cm aperture. 
For UC = 148 m/s and by Eq. (2), a structure 5 cm in length 
corresponds to a frequency of about 3 kHz.  Fig 15. also 
shows the inverse of the filter, (1-G(Ap/Λ)), scaled by 10-7 to 
fit in the graph vertically and for Ap/Λ = Apf/UC = f/3000 Hz.  
The exact shape does not and could not be expected to match, 
since the signal to be filtered does not have a uniform 
frequency distribution; however, they are high and low in the proper corresponding places.  This also verifies Eq. 
(11), as f
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Figure 15. T/T power spectrum and inverse 
filter 

T/T for this flow would be 7.5 kHz, which would indeed fulfill the spectrum requirements of the T/T 
removal.  In fact, a bandwidth of 4 kHz on the part of the T/T mirror might suffice. 

8. Conclusions 
This paper has examined the effect of removing tip-tilt over an aperture from aberrated wavefronts.  As is now 

common knowledge, the largest source of aberration for a flow over beam directors on airborne optical systems is 
when the optical signal passes through a separated shear layer.  Under the influences of the Kelvin-Helmholtz 
instability, shear layers are known to be self-similar.  This leads to the formation of linearly-growing, coherent 
structures that generate optical aberrations that are sinuous in both time and space in the streamwise direction.  The 
results reported here have shown that tilt removal over an aperture acts as a well-defined spatial filter when applied 
to a sinusoidal train of wavefronts passing through the aperture. 

Experimental data obtained for optical propagation through a Mach 0.77 shear layer have been shown to react 
in an uncannily-similar fashion to the sinusoidal model wavefronts studied here.  The linear growth seen in the 
average structures in shear layers allowed for the juxtaposition of downstream distance from the shear layer’s origin 
and structure size as related to the filter function.   

This similarity has revealed some interesting conclusions about the character of aberating structures in shear 
layers, and in other aberrating flows as well.  For example, The relationship between the shear layer’s growth in 
OPDrms and the serendipitous choice of a constant amplitude in the sinusoidal model has suggested avenues for 
simplified models of a shear layer’s optical response.  More importantly from operational considerations, this effort 
has provided an objective approach to determining bandwidth requirements for T/T mirrors for airborne optical 
systems. 
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