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Marginal Effects for Continuous Variables 
Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ 

Last revised January 17, 2022 
 
References:  Long 1997, Long and Freese 2003 & 2006 & 2014, Cameron & Trivedi’s “Microeconomics Using Stata” Revised 
Edition, 2010 

 
Overview. Marginal effects are computed differently for discrete (i.e. categorical) and 
continuous variables. This handout will explain the difference between the two. I personally find 
marginal effects for continuous variables much less useful and harder to interpret than marginal 
effects for discrete variables but others may feel differently. 
 
With binary independent variables, marginal effects measure discrete change, i.e. how do 
predicted probabilities change as the binary independent variable changes from 0 to 1? 
 
Marginal effects for continuous variables measure the instantaneous rate of change (defined 
shortly). They are popular in some disciplines (e.g. Economics) because they often provide a 
good approximation to the amount of change in Y that will be produced by a 1-unit change in Xk.  
But then again, they often do not.  
 
Example. We will show Marginal Effects at the Means (MEMS) for both the discrete and 
continuous independent variables in the following example. 
 
. use https://www3.nd.edu/~rwilliam/statafiles/glm-logit.dta, clear 
. logit grade gpa tuce i.psi, nolog 
 
Logistic regression                               Number of obs   =         32 
                                                  LR chi2(3)      =      15.40 
                                                  Prob > chi2     =     0.0015 
Log likelihood = -12.889633                       Pseudo R2       =     0.3740 
 
------------------------------------------------------------------------------ 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |   2.826113   1.262941     2.24   0.025     .3507938    5.301432 
        tuce |   .0951577   .1415542     0.67   0.501    -.1822835    .3725988 
       1.psi |   2.378688   1.064564     2.23   0.025       .29218    4.465195 
       _cons |  -13.02135   4.931325    -2.64   0.008    -22.68657    -3.35613 
------------------------------------------------------------------------------ 
 

http://www3.nd.edu/%7Erwilliam/
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. margins, dydx(*) atmeans 
 
Conditional marginal effects                      Number of obs   =         32 
Model VCE    : OIM 
 
Expression   : Pr(grade), predict() 
dy/dx w.r.t. : gpa tuce 1.psi 
at           : gpa             =    3.117188 (mean) 
               tuce            =     21.9375 (mean) 
               0.psi           =       .5625 (mean) 
               1.psi           =       .4375 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |   .5338589    .237038     2.25   0.024      .069273    .9984447 
        tuce |   .0179755   .0262369     0.69   0.493    -.0334479    .0693989 
       1.psi |   .4564984   .1810537     2.52   0.012     .1016397    .8113571 
------------------------------------------------------------------------------ 
Note: dy/dx for factor levels is the discrete change from the base level 
 

Discrete Change for Categorical Variables. Categorical variables, such as psi, can only take 
on two values, 0 and 1. It wouldn’t make much sense to compute how P(Y=1) would change if, 
say, psi changed from 0 to .6, because that cannot happen. The MEM for categorical variables 
therefore shows how P(Y=1) changes as the categorical variable changes from 0 to 1, holding all 
other variables at their means. That is, for a categorical variable Xk 
 

Marginal Effect Xk = Pr(Y = 1|X, Xk = 1) – Pr(y=1|X, Xk = 0) 
 
In the current case, the MEM for psi of .456 tells us that, for two hypothetical individuals with 
average values on gpa (3.12) and tuce (21.94), the predicted probability of success is .456 greater 
for the individual in psi than for one who is in a traditional classroom. To confirm, we can easily 
compute the predicted probabilities for those hypothetical individuals, and then compute the 
difference between the two. 
 
. margins psi, atmeans 
 
Adjusted predictions                              Number of obs   =         32 
Model VCE    : OIM 
 
Expression   : Pr(grade), predict() 
at           : gpa             =    3.117188 (mean) 
               tuce            =     21.9375 (mean) 
               0.psi           =       .5625 (mean) 
               1.psi           =       .4375 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         psi | 
          0  |   .1067571   .0800945     1.33   0.183    -.0502252    .2637393 
          1  |   .5632555   .1632966     3.45   0.001     .2432001    .8833109 
------------------------------------------------------------------------------ 
 
. display .5632555 - .1067571 
.4564984 
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For categorical variables with more than two possible values, e.g. religion, the marginal effects 
show you the difference in the predicted probabilities for cases in one category relative to the 
reference category. So, for example, if relig was coded 1 = Catholic, 2 = Protestant, 3 = Jewish, 4 
= other, the marginal effect for Protestant would show you how much more (or less) likely 
Protestants were to succeed than were Catholics, the marginal effect for Jewish would show you 
how much more (or less) likely Jews were to succeed than were Catholics, etc. 
 
Keep in mind that these are the marginal effects when all other variables equal their means 
(hence the term MEMs); the marginal effects will differ at other values of the Xs.  
 
Instantaneous rates of change for continuous variables. What does the MEM for gpa of 
.534 mean? It would be nice if we could say that a one unit increase in gpa will produce a .534 
increase in the probability of success for an otherwise “average” individual. Sometimes 
statements like that will be (almost) true, but other times they will not. For example, if an 
“average” individual (average meaning gpa = 3.12, tuce = 21.94, psi = .4375) saw a one point 
increase in their gpa, here is how their predicted probability of success would change: 
 
. margins, at(gpa = (3.117188 4.117188)) atmeans 
 
Adjusted predictions                              Number of obs   =         32 
Model VCE    : OIM 
 
Expression   : Pr(grade), predict() 
 
1._at        : gpa             =    3.117188 
               tuce            =     21.9375 (mean) 
               0.psi           =       .5625 (mean) 
               1.psi           =       .4375 (mean) 
 
2._at        : gpa             =    4.117188 
               tuce            =     21.9375 (mean) 
               0.psi           =       .5625 (mean) 
               1.psi           =       .4375 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         _at | 
          1  |   .2528205   .1052961     2.40   0.016      .046444     .459197 
          2  |   .8510027   .1530519     5.56   0.000     .5510265    1.150979 
------------------------------------------------------------------------------ 
 
. display .8510027 - .2528205 
.5981822 

 
Note that (a) the predicted increase of .598 is actually more than the MEM for gpa of .534, and 
(b) in reality, gpa couldn’t go up 1 point for a person with an average gpa of 3.117. 
 
MEMs for continuous variables measure the instantaneous rate of change, which may or may 
not be close to the effect on P(Y=1) of a one unit increase in Xk. The appendices explain the 
concept in detail. What the MEM more or less tells you is that, if, say, Xk increased by some 
very small amount (e.g. .001), then P(Y=1) would increase by about .001*.534 = .000534, e.g. 
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. margins, at(gpa = (3.117188 3.118188)) atmeans noatlegend 
 
Adjusted predictions                              Number of obs   =         32 
Model VCE    : OIM 
 
Expression   : Pr(grade), predict() 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         _at | 
          1  |   .2528205   .1052961     2.40   0.016      .046444     .459197 
          2  |   .2533547   .1053672     2.40   0.016     .0468388    .4598706 
------------------------------------------------------------------------------ 
 
. display .2533547 - .2528205 
.0005342 
 
Put another way, for a continuous variable Xk, 
 

Marginal Effect of Xk = limit [Pr(Y = 1|X, Xk+Δ) – Pr(y=1|X, Xk)] / Δ ] 
as Δ gets closer and closer to 0 

 
The appendices show how to get an exact solution for this.  
 
There is no guarantee that a bigger increase in Xk, e.g. 1, would produce an increase of 
1*.534=.534. This is because the relationship between Xk and P(Y = 1) is nonlinear. When Xk is 
measured in small units, e.g. income in dollars, the effect of a 1 unit increase in Xk may match up 
well with the MEM for Xk. But, when Xk is measured in larger units (e.g. income in millions of 
dollars) the MEM may or may not provide a very good approximation of the effect of a one unit 
increase in Xk. That is probably one reason why instantaneous rates of change for continuous 
variables receive relatively little attention, at least in Sociology. More common are approaches 
which focus on discrete changes. 
 
 
Conclusion. Marginal effects can be an informative means for summarizing how change in a 
response is related to change in a covariate. For categorical variables, the effects of discrete 
changes are computed, i.e., the marginal effects for categorical variables show how P(Y = 1) is 
predicted to change as Xk changes from 0 to 1 holding all other Xs equal. This can be quite 
useful, informative, and easy to understand.  
 
For continuous independent variables, the marginal effect measures the instantaneous rate of 
change. If the instantaneous rate of change is similar to the change in P(Y=1) as Xk increases by 
one, this too can be quite useful and intuitive. However, there is no guarantee that this will be the 
case; it will depend, in part, on how Xk is scaled.  
 
Subsequent handouts will show how the analysis of discrete changes in continuous variables can 
make their effects more intelligible. 
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Appendix A: AMEs for continuous variables, computed manually (Optional) 
 

Calculus can be used to compute marginal effects, but Cameron and Trivedi (Microeconometrics 
using Stata, Revised Edition, 2010, section 10,6.10, pp. 352 – 354) show that they can also be 
computed manually. The procedure is as follows: 
 
Compute the predicted values using the observed values of the variables. We will call this 
prediction1. 
 
Change one of the continuous independent variables by a very small amount. Cameron and 
Trivedi suggest using the standard deviation of the variable divided by 1000. We will refer to 
this as delta (Δ). 
 
Compute the new predicted values for each case. Call this prediction2. 
 
For each case, compute 
 

𝑥𝑥𝑥𝑥𝑥𝑥 =  
𝑝𝑝𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 − 𝑝𝑝𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1

𝛥𝛥
 

 
Compute the mean value of xme. This is the AME for the variable in question. 
 
Here is an example: 
 
 
. * Appendix A: Compute AMEs manually 
. webuse nhanes2f, clear 
. * For convenience, keep only nonmissing cases 
. keep if !missing(diabetes, female, age) 
(2 observations deleted) 
 
. clonevar xage = age 
. sum xage 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
        xage |     10335    47.56584    17.21752         20         74 
 
. gen xdelta = r(sd)/1000 
. logit diabetes i.female xage, nolog 
 
Logistic regression                               Number of obs   =      10335 
                                                  LR chi2(2)      =     345.87 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -1826.1338                       Pseudo R2       =     0.0865 
 
------------------------------------------------------------------------------ 
    diabetes |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    1.female |   .1549701   .0940619     1.65   0.099    -.0293878    .3393279 
        xage |   .0588637   .0037282    15.79   0.000     .0515567    .0661708 
       _cons |  -6.276732   .2349508   -26.72   0.000    -6.737227   -5.816237 
------------------------------------------------------------------------------ 
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. margins, dydx(xage) 
 
Average marginal effects                          Number of obs   =      10335 
Model VCE    : OIM 
 
Expression   : Pr(diabetes), predict() 
dy/dx w.r.t. : xage 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        xage |   .0026152    .000188    13.91   0.000     .0022468    .0029836 
------------------------------------------------------------------------------ 
 
. predict xage1 
(option pr assumed; Pr(diabetes)) 
 
. replace xage = xage + xdelta 
xage was byte now float 
(10335 real changes made) 
 
. predict xage2 
(option pr assumed; Pr(diabetes)) 
 
. gen xme = (xage2 - xage1) / xdelta 
. sum xme 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
         xme |     10335    .0026163    .0020192   .0003549   .0073454 
 
.  
end of do-file 
 
  



Marginal Effects for Continuous Variables Page 7 

 

Appendix B: Technical Discussion of Marginal Effects (Optional) 
 
In binary regression models, the marginal effect is the slope of the probability curve relating Xk 
to Pr(Y=1|X), holding all other variables constant. But what is the slope of a curve??? A little 
calculus review will help make this clearer. 
 
Simple Explanation. Draw a graph of F(Xk) against Xk, holding all the other X’s constant (e.g. 
at their means).  Chose 2 points, [Xk, F(Xk)] and [Xk+ Δ, F(Xk+ Δ)]. When Δ is very very small, 
the slope of the line connecting the two points will equal or almost equal the marginal effect of 
Xk. 
 
More Detailed Explanation. Again, what is the slope of a curve?  Intuitively, think of it this 
way. Draw a graph of F(X) against X, e.g. F(X) = X2. Chose specific values of X and F(X), e.g. 
[2, F(2)]. Choose another point, e.g. [8, F(8)].  Draw a line connecting the points.  This line has a 
slope. The slope is the average rate of change.   
 
Now,   choose another point that is closer to [2, F(2)], e.g. [7, F(7)]. Draw a line connecting these 
points. This too will have a slope. Keep on choosing points that are closer to [2, F(2)]. The 
instantaneous rate of change is the limit of the slopes for the lines connecting [X, F(X)] and 
[X+Δ, F(X + Δ)] as Δ gets closer and closer to 0. 
 

 
http://www.ugrad.math.ubc.ca/coursedoc/math100/notes/derivative/slope.html 

Last accessed January 29, 2019 
See the above link for more information 

 
Calculus is used to compute slopes (& marginal effects). For example, if Y = X2, then the slope 
is 2X. Hence, if X = 2, the slope is 4. The following table illustrates this. Note that, as Δ gets 
smaller and smaller, the slope gets closer and closer to 4. 
 

http://www.ugrad.math.ubc.ca/coursedoc/math100/notes/derivative/slope.html
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F(X) = X^2   X = 2   F(2) = 4

δ X+δ F(X+δ) Change in F(X) Change in X Slope
100 102 10404 10400 100 104
10 12 144 140 10 14
1 3 9 5 1 5

0.1 2.1 4.41 0.41 0.1 4.1
0.01 2.01 4.0401 0.0401 0.01 4.01

0.001 2.001 4.004001 0.004001 0.001 4.001
0.0001 2.0001 4.00040001 0.00040001 0.0001 4.0001  

 
Marginal effects are also called instantaneous rates of change; you compute them for a variable 
while all other variables are held constant. The magnitude of the marginal effect depends on the 
values of the other variables and their coefficients. The Marginal Effect at the Mean (MEM) is 
popular (i.e. compute the marginal effects when all x’s are at their mean) but many think that 
Average Marginal Effects (AMEs) are superior. 
 
Logistic Regression. Again, calculus is used to compute the marginal effects. In the case of 
logistic regression, F(X) = P(Y=1|X), and  
 

Marginal Effect for Xk = P(Y=1 |X) * P(Y = 0|X) * bk. 
 
Returning to our earlier example, 
 
. use https://www3.nd.edu/~rwilliam/statafiles/glm-logit.dta, clear 
. logit grade gpa tuce psi, nolog 
 
Logistic regression                               Number of obs   =         32 
                                                  LR chi2(3)      =      15.40 
                                                  Prob > chi2     =     0.0015 
Log likelihood = -12.889633                       Pseudo R2       =     0.3740 
 
------------------------------------------------------------------------------ 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |   2.826113   1.262941     2.24   0.025     .3507938    5.301432 
        tuce |   .0951577   .1415542     0.67   0.501    -.1822835    .3725988 
         psi |   2.378688   1.064564     2.23   0.025       .29218    4.465195 
       _cons |  -13.02135   4.931325    -2.64   0.008    -22.68657    -3.35613 
------------------------------------------------------------------------------ 
 
. adjust gpa tuce psi, pr 
 
-------------------------------------------------------------------------------------- 
     Dependent variable: grade     Equation: grade     Command: logit 
 Covariates set to mean: gpa = 3.1171875, tuce = 21.9375, psi = .4375 
-------------------------------------------------------------------------------------- 
 
---------------------- 
      All |         pr 
----------+----------- 
          |     .25282 
---------------------- 
     Key:  pr  =  Probability 
 



Marginal Effects for Continuous Variables Page 9 

. mfx 
 
Marginal effects after logit 
      y  = Pr(grade) (predict) 
         =  .25282025 
------------------------------------------------------------------------------ 
variable |      dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X 
---------+-------------------------------------------------------------------- 
     gpa |   .5338589      .23704    2.25   0.024   .069273  .998445   3.11719 
    tuce |   .0179755      .02624    0.69   0.493  -.033448  .069399   21.9375 
     psi*|   .4564984      .18105    2.52   0.012    .10164  .811357     .4375 
------------------------------------------------------------------------------ 
(*) dy/dx is for discrete change of dummy variable from 0 to 1 

 
Looking specifically at GPA – when all variables are at their means, pr(Y=1|X) = .2528, 
Pr(Y=0|X) = .7472, and bGPA = 2.826113.  The marginal effect at the mean for  GPA is therefore 
 

Marginal Effect of GPA = P(Y=1 |X) * P(Y = 0|X) * bGPA = .2528 * .7472 * 2.826113 = .5339 
 
The following table again shows you that, in logistic regression, as the distance between two 
points gets smaller and smaller, i.e. as Δ gets closer and closer to 0, the slope of the line 
connecting the points gets closer and closer to the marginal effect. 

 
Logistic Regression

F(X,GPA) = P(Y=1|X, GPA)   GPA=3.11719   Other X's at Mean F(X,3.11719) = .25282025107643

δ GPA+δ F(X,GPA+δ) Change in F(X,GPA) Change in GPA Slope
10 13.11719 1 0.747179749 10 0.0747179749
1 4.11719 0.851002558 0.598182307 1 0.5981823074

0.1 3.21719 0.309808293 0.056988042 0.1 0.5698804165
0.05 3.16719 0.280431679 0.027611428 0.05 0.5522285640
0.01 3.12719 0.258196038 0.005375787 0.01 0.5375787403

0.001 3.11819 0.253354486 0.000534235 0.001 0.5342350788
0.0001 3.11729 0.252873644 5.3393E-05 0.0001 0.5339297264  

 
Probit. In probit, the marginal effect is 
 

Marginal Effect for Xk = Φ(XB) * bk 
 
where Φ is the probability density function for a standardized normal variable.  For example, as 
this diagram shows, Φ(0) = .399: 
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Example: 
 
. use https://www3.nd.edu/~rwilliam/statafiles/glm-logit.dta, clear 
. probit  grade gpa tuce psi, nolog 
 
Probit estimates                                  Number of obs   =         32 
                                                  LR chi2(3)      =      15.55 
                                                  Prob > chi2     =     0.0014 
Log likelihood = -12.818803                       Pseudo R2       =     0.3775 
 
------------------------------------------------------------------------------ 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |    1.62581   .6938818     2.34   0.019     .2658269    2.985794 
        tuce |   .0517289   .0838901     0.62   0.537    -.1126927    .2161506 
         psi |   1.426332    .595037     2.40   0.017     .2600814    2.592583 
       _cons |   -7.45232   2.542467    -2.93   0.003    -12.43546   -2.469177 
------------------------------------------------------------------------------ 
 
. mfx 
 
Marginal effects after probit 
      y  = Pr(grade) (predict) 
         =  .26580809 
------------------------------------------------------------------------------ 
variable |      dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X 
---------+-------------------------------------------------------------------- 
     gpa |   .5333471      .23246    2.29   0.022   .077726  .988968   3.11719 
    tuce |   .0169697      .02712    0.63   0.531  -.036184  .070123   21.9375 
     psi*|    .464426      .17028    2.73   0.006   .130682   .79817     .4375 
------------------------------------------------------------------------------ 
(*) dy/dx is for discrete change of dummy variable from 0 to 1 
 
. * marginal change for GPA.  The invnorm function gives us the Z-score for the stated 
. * prob of success.  The normalden function gives us the pdf value for that Z-score. 
. display invnorm(.2658) 
-.62556546 
. display normalden(invnorm(.2658)) 
.32804496 
. display normalden(invnorm(.2658)) * 1.62581 
.53333878 
 

Marginal Effect for GPA = Φ(XB) * bk = .32804496 * 1.62581 = .5333 
 
The following table again shows you that, in a probit model, as the distance between two points 
gets smaller and smaller, i.e. as Δ gets closer and closer to 0, the slope of the line connecting the 
points gets closer and closer to the marginal effect. 
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Probit

F(X,GPA) = P(Y=1|X, GPA)   GPA=3.11719 Other X's at Mean   F(X,3.11719) = .26580811

δ GPA+δ F(X,GPA+δ) Change in F(X,GPA) Change in GPA Slope
10 13.11719 1 0.73419189 10 0.0734191890
1 4.11719 0.841409951 0.575601841 1 0.5756018408

0.1 3.21719 0.321696605 0.055888495 0.1 0.5588849545
0.01 3.12719 0.27116854 0.00536043 0.01 0.5360430345

0.001 3.11819 0.266341711 0.000533601 0.001 0.5336010479
0.0001 3.11729 0.26586143 5.33203E-05 0.0001 0.5332029760  

 
Using the margins command for MEMs & AMEs, 
 
. quietly probit  grade gpa tuce i.psi, nolog 
. margins, dydx(*) atmeans 
 
Conditional marginal effects                      Number of obs   =         32 
Model VCE    : OIM 
 
Expression   : Pr(grade), predict() 
dy/dx w.r.t. : gpa tuce 1.psi 
at           : gpa             =    3.117188 (mean) 
               tuce            =     21.9375 (mean) 
               0.psi           =       .5625 (mean) 
               1.psi           =       .4375 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |   .5333471   .2324641     2.29   0.022     .0777259    .9889683 
        tuce |   .0169697   .0271198     0.63   0.531    -.0361841    .0701235 
       1.psi |    .464426   .1702807     2.73   0.006     .1306819    .7981701 
------------------------------------------------------------------------------ 
Note: dy/dx for factor levels is the discrete change from the base level. 
 
. margins, dydx(*) 
 
Average marginal effects                          Number of obs   =         32 
Model VCE    : OIM 
 
Expression   : Pr(grade), predict() 
dy/dx w.r.t. : gpa tuce 1.psi 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |   .3607863   .1133816     3.18   0.001     .1385625    .5830102 
        tuce |   .0114793   .0184095     0.62   0.533    -.0246027    .0475612 
       1.psi |   .3737518   .1399913     2.67   0.008      .099374    .6481297 
------------------------------------------------------------------------------ 
Note: dy/dx for factor levels is the discrete change from the base level. 

 
As a sidelight, note that the marginal effects (both MEMs and AMEs) for probit are very similar 
to the marginal effects for logit. This is usually the case. 
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OLS. Here is what you get when you compute the marginal effects for OLS: 
 
. use https://www3.nd.edu/~rwilliam/statafiles/glm-reg.dta, clear 
. reg income  educ jobexp black 
 
      Source |       SS       df       MS              Number of obs =     500 
-------------+------------------------------           F(  3,   496) =  787.14 
       Model |  33206.4588     3  11068.8196           Prob > F      =  0.0000 
    Residual |  6974.79047   496  14.0620776           R-squared     =  0.8264 
-------------+------------------------------           Adj R-squared =  0.8254 
       Total |  40181.2493   499  80.5235456           Root MSE      =  3.7499 
 
------------------------------------------------------------------------------ 
      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   1.840407   .0467507    39.37   0.000     1.748553    1.932261 
      jobexp |   .6514259   .0350604    18.58   0.000     .5825406    .7203111 
       black |   -2.55136   .4736266    -5.39   0.000    -3.481921   -1.620798 
       _cons |   -4.72676   .9236842    -5.12   0.000    -6.541576   -2.911943 
------------------------------------------------------------------------------ 
 
. margins, dydx(*) atmeans 
 
Conditional marginal effects                      Number of obs   =        500 
Model VCE    : OLS 
 
Expression   : Linear prediction, predict() 
dy/dx w.r.t. : educ jobexp black 
at           : educ            =       13.16 (mean) 
               jobexp          =       13.52 (mean) 
               black           =          .2 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   1.840407   .0467507    39.37   0.000     1.748777    1.932036 
      jobexp |   .6514259   .0350604    18.58   0.000     .5827087    .7201431 
       black |   -2.55136   .4736266    -5.39   0.000    -3.479651   -1.623069 
------------------------------------------------------------------------------ 
 
. margins, dydx(*) 
 
Average marginal effects                          Number of obs   =        500 
Model VCE    : OLS 
 
Expression   : Linear prediction, predict() 
dy/dx w.r.t. : educ jobexp black 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   1.840407   .0467507    39.37   0.000     1.748777    1.932036 
      jobexp |   .6514259   .0350604    18.58   0.000     .5827087    .7201431 
       black |   -2.55136   .4736266    -5.39   0.000    -3.479651   -1.623069 
------------------------------------------------------------------------------ 
 
The marginal effects are the same as the slope coefficients. This is because relationships are 
linear in OLS regression and do not vary depending on the values of the other variables. 
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However, note that the marginal effects and slope coefficients will NOT be the same if an OLS 
regression includes, say, interaction effects or squared terms. Remember, things like interaction 
effects do not have marginal effects of their own, because they cannot vary independently of the 
variables used to compute them. 
 
. reg income  educ jobexp i.black i.black#c.educ 
 
      Source |       SS           df       MS      Number of obs   =       500 
-------------+----------------------------------   F(4, 495)       =    590.98 
       Model |  33224.1735         4  8306.04337   Prob > F        =    0.0000 
    Residual |  6957.07579       495  14.0546986   R-squared       =    0.8269 
-------------+----------------------------------   Adj R-squared   =    0.8255 
       Total |  40181.2493       499  80.5235456   Root MSE        =     3.749 
 
------------------------------------------------------------------------------ 
      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   1.871867   .0544955    34.35   0.000     1.764797    1.978938 
      jobexp |   .6507458   .0350565    18.56   0.000      .581868    .7196236 
             | 
       black | 
      black  |  -1.276164   1.230593    -1.04   0.300    -3.693994    1.141667 
             | 
black#c.educ | 
      black  |  -.1138004    .101365    -1.12   0.262     -.312959    .0853582 
             | 
       _cons |  -5.154473   .9989431    -5.16   0.000    -7.117165   -3.191782 
------------------------------------------------------------------------------ 
 
. margins, dydx(*) 
 
Average marginal effects                        Number of obs     =        500 
Model VCE    : OLS 
 
Expression   : Linear prediction, predict() 
dy/dx w.r.t. : educ jobexp 1.black 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   1.849107   .0473765    39.03   0.000     1.756023    1.942191 
      jobexp |   .6507458   .0350565    18.56   0.000      .581868    .7196236 
             | 
       black | 
      black  |  -2.773777   .5132767    -5.40   0.000    -3.782246   -1.765307 
------------------------------------------------------------------------------ 
Note: dy/dx for factor levels is the discrete change from the base level. 
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. reg income  educ jobexp i.black c.educ#c.educ 
 
      Source |       SS           df       MS      Number of obs   =       500 
-------------+----------------------------------   F(4, 495)       =    692.04 
       Model |  34085.9871         4  8521.49678   Prob > F        =    0.0000 
    Residual |  6095.26213       495  12.3136609   R-squared       =    0.8483 
-------------+----------------------------------   Adj R-squared   =    0.8471 
       Total |  40181.2493       499  80.5235456   Root MSE        =    3.5091 
 
------------------------------------------------------------------------------- 
       income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
         educ |   .3535827   .1812831     1.95   0.052    -.0025966    .7097621 
       jobexp |   .5787591   .0339164    17.06   0.000     .5121212     .645397 
              | 
        black | 
       black  |  -3.574769     .45945    -7.78   0.000    -4.477481   -2.672056 
              | 
c.educ#c.educ |   .0568312   .0067244     8.45   0.000     .0436193    .0700431 
              | 
        _cons |   5.285885   1.466521     3.60   0.000     2.404512    8.167258 
------------------------------------------------------------------------------- 
 
. margins, dydx(*) 
 
Average marginal effects                        Number of obs     =        500 
Model VCE    : OLS 
 
Expression   : Linear prediction, predict() 
dy/dx w.r.t. : educ jobexp 1.black 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |    1.84938   .0437607    42.26   0.000       1.7634     1.93536 
      jobexp |   .5787591   .0339164    17.06   0.000     .5121212     .645397 
             | 
       black | 
      black  |  -3.574769     .45945    -7.78   0.000    -4.477481   -2.672056 
------------------------------------------------------------------------------ 
Note: dy/dx for factor levels is the discrete change from the base level. 
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