# Models for Count Outcomes 

Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/
Last revised April 12, 2022

These notes borrow heavily (sometimes verbatim) from Long 1997, Regression Models for Categorical and Limited Dependent Variables, and Long \& Freese, 2003 Regression Models for Categorical Dependent Variables Using Stata, Revised Edition, and also the $20143^{\text {rd }}$ edition of Long \& Freese. For rcpoisson, see Right-censored Poisson regression model, Stata Journal 2011, 11(1) pp. 95-105. Materials prepared by my former teaching assistant, the late Jamie Przybysz, are also incorporated in these notes.

Variables that count the \# of times something happens are common in the Social Sciences.

- Hausman looked at effect of R \& D expenditures on \# of patents received by US companies
- Grogger examined deterrent effects of capital punishment on daily homicides
- King examined effect of \# of alliances on the \# of nations at war
- Long looked at \# of publications of scientists

Count variables are often treated as though they are continuous and the linear regression model is applied; but this can result in inefficient, inconsistent and biased estimates. Fortunately, there are many models that deal explicitly with count outcomes.

- $\quad$ The most basic is the Poisson Regression Model (PRM). In the PRM the probability of a count is determined by a Poisson distribution, where the mean of the distribution is a function of the IVs. The conditional mean of the outcome is equal to the conditional variance.
- In practice, however, the conditional variance often exceeds the conditional mean. The Negative Binomial Regression Model (NBRM) deals with this problem by allowing the variance to exceed the mean.
- The PRM and NBRM are covered in the main handout. Other more advanced models are briefly covered in the appendix.
- Many count variables are only observed after the first count occurs. For example, we may not have a list of every Sociologist; we only have a list of those who have published at least one article. This requires a Truncated Count Model.
- Another problem is that the \# of 0's in a sample often exceeds the \# predicted by either the PRM or the NBRM. Zero Modified Count Models explicitly model the \# of predicted 0 s , and also allow the variance to differ from the mean. For example, sometimes the process that generates zeros is believed to be different than the process that generates higher counts. Hurdle Models and Zero-Inflated Models are among the ways to deal with this.


## The Poisson Distribution.

Let $y$ be a random variable indicating the $\#$ of times an event has occurred during an interval of time. $y$ has a Poisson distribution with parameter $\mu>0$ if

$$
\operatorname{Pr}(y \mid \mu)=\frac{\exp (-\mu) \mu^{y}}{y!} \quad \text { for } \mathrm{y}=0,1,2, \ldots
$$

| $\#$ of occurrences | $\operatorname{Pr}(\mathrm{y}=\#$ of occurrences $\mid \mu)$ |
| :--- | :--- |
| 0 | $\operatorname{Exp}(-\mu)$ |
| 1 | $\operatorname{Exp}(-\mu) \mu$ |
| 2 | $\operatorname{Exp}(-\mu) \mu^{2} / 2$ |
| 3 | $\operatorname{Exp}(-\mu) \mu^{3} / 6$ |
| 4 | $\operatorname{Exp}(-\mu) \mu^{4} / 24$ |

So, for example, with 50 events occurring to 100 units, we find the following:
$\operatorname{Prop}(0)=\left[\left(.5^{0}\right) *\left(\mathrm{e}^{-5}\right) / 1\right]=.61$ (61 of the 100 units will experience no events)
$\operatorname{Prop}(1)=\left[\left(.5^{1}\right) *\left(\mathrm{e}^{-5}\right) / 1\right]=.30(30$ of the 100 units will experience 1 event $)$
$\operatorname{Prop}(2)=\left[\left(.5^{2}\right)^{*}\left(\mathrm{e}^{-.5}\right) /\left(2^{*} 1\right)\right]=.08$ ( 8 of the 100 units will experience 2 events)
$\operatorname{Prop}(3)=\left[\left(.5^{3}\right) *\left(\mathrm{e}^{-.5}\right) /(3 * 2 * 1)\right]=.01$ ( 1 of the 100 units will experience 3 events)
$\operatorname{Prop}(4)=\left[\left(.5^{4}\right) *\left(\mathrm{e}^{-5}\right) /(4 * 3 * 2 * 1)\right]=.002$ (not substantively meaningful here, as it is too small, $)$
$\operatorname{Prop}(5)=\left[\left(.5^{5}\right) *\left(\mathrm{e}^{-.5}\right) /(5 * 4 * 3 * 2 * 1)\right]=.0002$ (but presented to show the example calculations )
This figure shows what the Poisson distribution looks like for different values of $\mu$


Image copied from http://www.cmh.edu/stats/model/poiss10.htm

## Key properties of the Poisson distribution:

- As $\mu$ increases, the mass of the distribution shifts to the right. Specifically, $E(y)=\mu$. The parameter $\mu$ is known as the rate since it is the expected \# of times that an event has occurred per unit of time. $\mu$ can also be thought of as the mean or expected count.
- The variance equals the mean. The equality of the mean and the variance is known as equidispersion. In practice, count variables often have a variance that is greater than the mean, which is called overdispersion. The development of many models for count data is an attempt to account for overdispersion.
- As $\mu$ increases, the probability of 0 s decreases. For $\mu=.8$, the probability of a 0 is .45 . For $\mu=1.5$, it is .22 , for $\mu=2.9$, it is .05 ; and for $\mu=10.5$, the probability is .00002 . For many count variables, there are more observed 0 s than predicted by the Poisson distribution.
- As $\mu$ increases, the Poisson distribution approximates a normal distribution.

A critical assumption of a Poisson process is that events are independent; this means that when an event occurs it does not affect the probability of an event occurring in the future. For example, this implies that when a scientist publishes a paper, her rate of publication does not change. Past success in publishing does not affect future success.

As noted, the actual variance is often larger than a Poisson process would suggest. One likely explanation is that $\mu$ differs across individuals, e.g. not all scientists are equally productive. This is known as heterogeneity. For example, suppose that for men, mean productivity $=\mu+\delta$, and for women it is $\mu-\delta$. If the number of men and women is equal, the mean productivity will be $\mu$, but the variance will exceed $\mu$. In general, failure to account for heterogeneity among individuals in the rate of a count variable leads to overdispersion. This leads to the Poisson Regression Model which introduces heterogeneity based on observed characteristics.

## Poisson Regression Model

In the PRM, the \# of events y has a Poisson distribution with a conditional mean that depends on an individual's characteristics:

$$
\mu_{i}=E\left(y_{i} \mid x_{i}\right)=\exp \left(x_{i} \beta\right)
$$

Note the exponentiation forces the expected count to be positive. It can also be written as (and this is more consistent with the way we have written all our other models)

$$
\ln \left(\mu_{i}\right)=x_{i} \beta
$$

Under this model, as $\mu$ increases, the conditional variance of $y$ increases, the proportion of predicted 0 s decreases and the distribution around the expected value becomes approximately normal.

The PRM can be thought of as a non-linear regression model with errors equal to $\varepsilon=y-E(y \mid x)$. The errors have a Poisson distribution. But, we cannot use OLS as the regression technique for data that resemble a Poisson distribution because in the Poisson, the mean $(\mu)=$ Variance of $x$. As $\mu$ increases, so does the variance around it. (You'll recall that OLS assumes a constant variance.) The dispersion of data increases as $\mu$ increases. Since the level of the DV affects dispersion, the errors in a Poisson regression are inherently heteroskedastic. The PRM is, in fact, another case of the Generalized Linear Model that we have been talking about and is estimated via maximum likelihood. The family is Poisson (errors have a Poisson distribution) and the link is $\log$ (the $\log$ of $\mathrm{E}(\mathrm{Y})$ is the dependent variable).

You can use the parameters to compute the probability distribution for a given level of the IVs. For a given $x$, the probability that $y=m$ is

$$
\hat{\operatorname{Pr}}(y=m \mid x)=\frac{\exp (-\hat{\mu}) \hat{\mu}^{m}}{m!} \text { where } \hat{\mu}=\exp (x \hat{\beta})
$$

The PRM model should do better than a univariate Poisson distribution. Still, it can under predict 0s and have a variance that is greater than the conditional mean. Hence, other models have been developed which we will discuss shortly.

Estimating the PRM in Stata. The poisson command is used to estimate Poisson Regression Models. Long and Freese present an analysis of the number of publications produced by Ph.D. biochemists:

```
. use https://www3.nd.edu/~rwilliam/statafiles/couart4.dta, clear
(couart4.dta | Long data on Ph.D. biochemists | 2014-04-24)
```



Note that the mean \# of articles published is 1.69 . Note too that the variance is $1.926^{2}=3.71$, which is substantially more than the mean.

We now estimate a simple model with constant-only. If this model is valid, then every academic biochemist has the same rate of productivity.

```
. poisson art, nolog
Poisson regression Number of obs = 915
    LR chi2(0) = 0.00
    Prob > chi2 = .
    Pseudo R2 = 0.0000
```



Note that the coefficient for the constant is .52664408 . Further, note that $\exp (.52664408)=$ 1.693, the same as the mean given in the earlier descriptive statistics.

Your intuition probably tells you that this model does not make much sense - but how do you test it? You can do so with the estat gof post-estimation command (the older poisgof command also works)

## estat gof

```
Deviance goodness-of-fit = 1817.405
Prob > chi2(914) = 0.0000
Pearson goodness-of-fit = 2002.901
Prob > chi2(914) = 0.0000
```

This command compares the observed distribution with the distribution predicted by a Poisson distribution. The highly significant test statistic indicates that this is not a very good model. Long and Freese describe a procedure for comparing the predicted with the observed distribution. Their post-estimation command mgen computes the predicted rate and predicted probabilities of each count from 0 to the specified maximum for every observation.

| Predictions from: |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable |  | Unique | Mean | Min | Max | Label |
| psnval | 10 | 10 | 4.5 | 0 | 9 | Articles in last 3 yrs of PhD |
| psnobeq | 10 | 10 | . 0993443 | .0010929 | . 3005464 | Observed proportion |
| psnoble | 10 | 10 | . 8328962 | . 3005464 | . 9934427 | Observed cum. proportion |
| psnpreq | 10 | 10 | . 0999988 | . 0000579 | . 311469 | Avg predicted Pr (y=\#) |
| psnprle | 10 | 10 | . 8307106 | . 1839859 | . 9999884 | Avg predicted cum. Pr(y=\#) |
| psnob_pr | 10 | 10 | -. 0006546 | -. 0691068 | .1165605 | Observed - Avg $\operatorname{Pr}(\mathrm{y}=\#)$ |

```
. label var psnobeq "Observed Proportion"
. label var psnpreq "Poisson Prediction"
. label var psnval "# of articles"
. list psnval psnobeq psnpreq in 1/10
\begin{tabular}{|c|c|c|c|}
\hline & psnval & psnobeq & psnpreq \\
\hline 1. & 10 & . 3005464 & . 1839859 \\
\hline 2. & 1 & . 2688525 & . 311469 \\
\hline 3. & 2 & . 1945355 & . 2636424 \\
\hline 4. & 3 & . 0918033 & . 148773 \\
\hline 5. & 4 & . 073224 & . 0629643 \\
\hline 6. & 5 & . 0295082 & . 0213184 \\
\hline 7. & 6 & . 0185792 & . 006015 \\
\hline 8. & 7 & . 0131148 & . 0014547 \\
\hline 9. & 8 & . 0010929 & . 0003078 \\
\hline 10. & 19 & . 0021858 & . 0000579 \\
\hline
\end{tabular}
```

As you can see, when the mean is 1.69 , a Poisson distribution predicts that $18.39 \%$ of the cases will be zeros; but in reality more than $30 \%$ are. You also see more people than predicted in the $3+$ range. If you want to graph this (and can remember the command!):

```
. graph twoway connected psnobeq psnpreq psnval, ///
    ytitle("Probability") ylabel(0(.1).4) xlabel(0/9) msym(O Th)
```



Of course, we never believed in that model anyway. Productivity may differ by gender, marital status, number of young children, prestige of the graduate program, and the number of articles written by a scientist's mentor. If so, mixing together scientists who differ in their rate of productivity can cause the univariate distribution of the articles to be overdispersed, i.e. have a variance greater than its mean. To account for these differences we add IVs to our model:


## . estat gof

```
Deviance goodness-of-fit = 1634.371
Prob > chi2(909) = 0.0000
Pearson goodness-of-fit = 1662.547
Prob > chi2(909) = 0.0000
```

Alas, the fit still isn't very good. Repeating our earlier procedure:

. label var psnobeq "Observed Proportion"
. label var psnpreq "Poisson Prediction"
. label var psnval "\# of articles"
. list psnval psnobeq psnpreq in 1/10

|  | psnval | psnobeq | psnpreq |
| :---: | :---: | :---: | :---: |
| 1. | 0 | . 3005464 | . 2092071 |
| 2 | 1 | . 2688525 | . 3098447 |
| 3 | 2 | . 1945355 | . 242096 |
| 4 | 3 | . 0918033 | . 1346656 |
| 5. | 4 | . 073224 | . 0611696 |
| 6. | 5 | . 0295082 | . 0249554 |
| 7 | 6 | . 0185792 | . 0099346 |
| 8. | 7 | . 0131148 | .0041384 |
| 9. | 8 | . 0010929 | . 001877 |
| 10. | 9 | . 0021858 | .0009304 |

```
graph twoway connected psnobeq psnpreq psnval, ///
    ytitle("Probability") ylabel(0(.1).4) xlabel(0/9) msym(O Th)
```



Again, we see more observed zeroes than predicted zeros. We'll talk about some alternatives to this model, but first we'll talk about how to interpret the parameters we have got.

Optional: Relationship to the Generalized Linear Model. As noted before, Poisson Regression models are a special case of the Generalized Linear Model. Therefore they can also be estimated with the glm command:


Interpreting the Results of the PRM. In their current form, the beta coefficients tell us how much a 1 unit increase in each $X$ causes the $\log$ of $\mu$ to increase. Since that isn't the most intuitive idea in the world, it will be useful to exponentiate the coefficients. We can do this by adding the irr parameter (which, mathematically, does the exact same thing as the odds ratio parameter we have used in the past; but irr stands for incident rate ratio, with the idea being that the coefficient tells you how changes in X affect the rate at which Y occurs (keeping in mind that the terms rate and mean stand for the same thing here.)


These coefficients tell us that, on an all other things equal basis,

- Females publish $80 \%$ as many articles as males, i.e. are $20 \%$ less productive
- Married people are about $17 \%$ more productive than unmarried people
- Each additional child multiplies the rate of productivity by .83 , e.g. somebody with one child will only produce $83 \%$ as many articles as somebody with no children.
- The prestige of the PHD institution doesn't have much effect
- For each additional article a mentor publishes, productivity gets multiplied by 1.025872 , i.e. there is about a $2.6 \%$ increase per article. (But remember, you do compounding, not addition, as you figure the effect of increases in X that are greater than one.

Optional: Old commands used in slightly new ways. The margins command is also helpful. Note that the default asobserved is being used instead of atmeans.


```
margins, dydx(*)
Average marginal effects Number of obs = 915
Model VCE : OIM
Expression : Predicted number of events, predict()
dy/dx w.r.t. : 1.female 1.married kid5 phd mentor
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Delta-method} & \(\mathrm{P}>|\mathrm{z}|\) & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline female & & & & & & \\
\hline Female & -. 3748107 & . 0900846 & -4.16 & 0.000 & -. 5513733 & -. 1982481 \\
\hline & & & & & & \\
\hline married & & & & & & \\
\hline Married & . 256412 & . 0990332 & 2.59 & 0.010 & . 0623105 & . 4505135 \\
\hline kid5 & -. 3129872 & . 068395 & -4.58 & 0.000 & -. 447039 & -. 1789354 \\
\hline phd & . 0217073 & . 0446911 & 0.49 & 0.627 & -. 0658857 & . 1093003 \\
\hline mentor & . 0432412 & . 0035694 & 12.11 & 0.000 & . 0362454 & . 0502371 \\
\hline
\end{tabular}
Note: dy/dx for factor levels is the discrete change from the base level.
```

The results tell us that, after controlling for other variables, on average woman publish .375 fewer articles than men; and on average, married people publish .256 more articles.

The mcp command is also good:


Even though there are no interaction terms in the model, we see that the expected differences between men and women are small when mentors have low productivity, and gradually become much larger.

```
mchange continues to be useful:
. mchange
poisson: Changes in mu | Number of obs = 915
Expression: Predicted number of art, predict()
\begin{tabular}{|c|c|c|}
\hline & Change & -value \\
\hline \multicolumn{3}{|l|}{female} \\
\hline Female vs Male & -0.375 & 0.000 \\
\hline married & & \\
\hline Married vs Single & 0.256 & 0.010 \\
\hline \multicolumn{3}{|l|}{kid5} \\
\hline +1 & -0.286 & 0.000 \\
\hline +SD & -0.223 & 0.000 \\
\hline Marginal & -0.313 & 0.000 \\
\hline \multicolumn{3}{|l|}{phd} \\
\hline +1 & 0.022 & 0.629 \\
\hline +SD & 0.022 & 0.629 \\
\hline Marginal & 0.022 & 0.627 \\
\hline \multicolumn{3}{|l|}{mentor} \\
\hline +1 & 0.044 & 0.000 \\
\hline +SD & 0.464 & 0.000 \\
\hline Marginal & 0.043 & 0.000 \\
\hline
\end{tabular}
Average prediction
    1.693
```

The listcoef command can also be used here:
. listcoef, help

```
poisson (N=915): Factor change in expected count
    Observed SD: 1.9261
```

|  | b | z | $\mathrm{P}>\|\mathrm{z}\|$ | $e^{\wedge} \mathrm{b}$ | $e^{\wedge} \mathrm{bStdx}$ | SDofX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| female |  |  |  |  |  |  |
| Female | -0.2246 | -4.112 | 0.000 | 0.799 | 0.894 | 0.499 |
|  |  |  |  |  |  |  |
| married |  |  |  |  |  |  |
| Married | 0.1552 | 2.529 | 0.011 | 1.168 | 1.076 | 0.473 |
| kid5 | -0.1849 | -4.607 | 0.000 | 0.831 | 0.868 | 0.765 |
| phd | 0.0128 | 0.486 | 0.627 | 1.013 | 1.013 | 0.984 |
| mentor | 0.0255 | 12.733 | 0.000 | 1.026 | 1.274 | 9.484 |
| constant | 0.3046 | 2.958 | 0.003 | . | . | . |

```
            b = raw coefficient
            z = z-score for test of b=0
        P>|z| = p-value for z-test
            e^b = exp (b) = factor change in expected count for unit increase in X
e^bStdX = exp (b*SD of X) = change in expected count for SD increase in X
    SDofX = standard deviation of X
```

The main additional piece of information you are gaining here is the effect on productivity of a 1 standard deviation increase in X. Alternatively, we can get the percent change produced by changes in X with the following:

```
. listcoef, help percent
poisson (N=915): Percentage change in expected count
    Observed SD: 1.9261
(1)
    b = raw coefficient
    z = z-score for test of b=0
    P>|z| = p-value for z-test
    % = percent change in expected count for unit increase in X
    %StdX = percent change in expected count for SD increase in X
    SDofX = standard deviation of X
```

Exposure time. So far we have implicitly assumed that each observation was "at risk" of an event occurring for the same amount of time. This need not be true; for example, scientists may have received their Ph.D.s in different years. Amount of time in career will certainly affect the number of publications. Further, if exposure time is correlated with our variables, e.g. men have had the Ph.D.s longer than women have, we may get very misleading results.

Since the data from our example do not include exposure data, we will make some up. The variable profage corresponds to the scientists professional age which corresponds to the amount of time a scientist has been exposed to the risk of publishing. In the following, men have an average professional age of 30 , while women have an average professional age of 15 :

```
. set seed 123456
. gen profage = (10 + invnorm(uniform())) * 3 if female == 0
(421 missing values generated)
. set seed 1234567
. replace profage = (5 + invnorm(uniform())) * 3 if female == 1
(421 real changes made)
. bysort female: sum profage
```

```
-> female = Male
\begin{tabular}{cccccc} 
Variable | & Obs & Mean & Std. Dev. & Min & Max \\
profage | & 494 & 29.98072 & 2.888995 & 21.81031 & 39.3049
\end{tabular}
-> female = Female
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable | & Obs & Mean & Std. Dev. & Min & Max \\
\hline profage & 421 & 73158 & 3.16198 & 9592 & 8156 \\
\hline
\end{tabular}
```

As Long and Freese note, there are different ways to incorporate exposure time into Poisson models. The simplest may be to use the exposure option.

| Poisson regression |  |  |  | Number of obs <br> LR chi2(5) <br> Prob > chi2 |  |  | $\begin{array}{r} 915 \\ 239.98 \\ 0.0000 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Log likelihood = -1671.3634 |  |  |  | Pseudo R2 |  |  | 0.0670 |
| art | IRR | Std. Err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Conf. Interval] |  |  |
| female \| |  |  |  |  |  |  |  |
| Female | 1.631257 | . 0889582 | 8.97 | 0.000 | 1.465896 |  | 1.815271 |
|  |  |  |  |  |  |  |  |
| married |  |  |  |  |  |  |  |
| Married | 1.1572 | . 0709218 | 2.38 | 0.017 | 1.02 |  | 1.304897 |
| kid5 | . 8341539 | . 0333962 | -4.53 | 0.000 | . 7712 |  | . 9022459 |
| phd | 1.025738 | . 0270875 | 0.96 | 0.336 | . 9739 |  | 1.080226 |
| mentor | 1.025974 | . 002049 | 12.84 | 0.000 | 1.021 |  | 1.029998 |
| $\ln (\text { profage } \overline{\text { cons }}$ | . 0435926 | . 0045095 | -30.29 | 0.000 | . 0355 |  | . 0533908 |
|  | 1 | (exposure) |  |  |  |  |  |

Notice how this dramatically changes our estimate of the effect of gender; once we control for exposure time, women are much more productive than men. In other words, their lower productivity is due to the fact that they haven't had their Ph.Ds as long. Hence, failing to control for exposure time could create a very misleading impression.

## Negative Binomial Regression Model

The PRM accounts for observed heterogeneity (i.e. observed differences among sample members) by specifying the rate $\mu$ as a function of the observed Xs. In practice, the PRM rarely fits, because of overdispersion. That is, the model underestimates the amount of dispersion in the outcome. If the mean structure from the PRM is correct, but there is overdispersion in the estimates,

- PRM estimates are consistent, but inefficient
- Standard errors will be biased downward resulting in spuriously large z-values

The NBRM adds a parameter that allows the conditional variance of y to exceed the conditional mean. In the NBRM, the mean $\mu$ is replaced with the random variable $\widetilde{\mu}$ :

$$
\widetilde{\mu}_{i}=\exp \left(x_{i} \beta+\varepsilon_{i}\right)
$$

where $\varepsilon$ is a random error that is assumed to be uncorrelated with x . You can think of $\varepsilon$ as either the combined effects of unobserved variables that have been omitted from the model or as another source of pure randomness.

Put another way, in the PRM, variation in $\mu$ is introduced through observed heterogeneity. In the NBRM, you also have variation due to unobserved heterogeneity. For a given combination of xs there is a distribution of $\mu \mathrm{s}$ rather than a single $\mu$. The conditional mean is still $\mu$, but the variance will be greater because of the error term.

Optional. The relationship between mu-squiggle and mu is

$$
\widetilde{\mu}_{i}=\exp \left(x_{i} \beta\right) \exp \left(\varepsilon_{i}\right)=\mu_{i} \exp \left(\varepsilon_{i}\right)=\mu \delta_{i}
$$

The NBRM is not identified without an assumption about the mean of the error term, and the most convenient assumption is that the mean is 1 . (This is analogous to assuming in OLS regression that the mean of the residuals is 0 ). Hence,

$$
\widetilde{\mu}_{i}=\exp \left(x_{i} \beta\right) \exp \left(\varepsilon_{i}\right)=\mu_{i} \exp \left(\varepsilon_{i}\right)=\mu \delta_{i}=\mu_{i}
$$

What is the distribution of delta? The most common assumption is that delta has a gamma distribution with parameter $v$. If delta has a gamma distribution, then $E(d e l t a)=1$ and $\operatorname{Var}($ delta $)$ $=1 / \mathrm{v}$.

The expected value of $y$ for the Negative Binomial distribution is the same as for the Poisson distribution, but the conditional variance differs:

$$
\operatorname{Var}\left(y_{i} \mid x\right)=\mu_{i}\left(1+\frac{\mu_{i}}{v_{i}}\right)=\exp \left(x_{i} \beta\right)\left(1+\frac{\exp \left(x_{i} \beta\right.}{v_{i}}\right)
$$

Since mu and $v$ are positive, the conditional variance of $y$ in the NBRM must exceed the conditional mean $\exp (x B)$.

If $v$ varies by individuals, then there are more parameters than there are observations. The most common identifying assumption is that v is the same for all individuals (again note the similarities with OLS):

$$
v_{i}=\alpha^{-1} \text { for } \alpha>0
$$

$\alpha$ is known as the dispersion parameter since increasing $\alpha$ increases the conditional variance of y. Substituting back into our formula for the conditional variance of $y$,

$$
\operatorname{Var}\left(y_{i} \mid x\right)=\mu_{i}\left(1+\frac{\mu_{i}}{\alpha^{-1}}\right)=\exp \left(x_{i} \beta\right)\left(1+\frac{\exp \left(x_{i} \beta\right.}{v_{i}}\right)=\mu_{i}\left(1+\alpha \mu_{i}\right)=\mu_{i}+\alpha \mu_{i}^{2}
$$

Note that, if alpha $=0$, the mean and variance become one and the same, and you have a Poisson model.

The larger conditional variance in y increases the relative frequency of low and high counts. The NB distribution corrects a number of sources of poor fit that are often found when the Poisson distribution is used:

- The variance of the NB distribution exceeds the variance of the Poisson distribution for a given mean
- The increased variance in the NBRM results in substantially larger probabilities for small counts.
- There are slightly larger probabilities for larger counts in the NB distribution.

Optional: Heterogeneity and Contagion. Our discussion so far has motivated the NB distribution by talking about unobserved heterogeneity. An alternative derivation is based on the idea of contagion. Contagion occurs when individuals with a given set of Xs have the same probability of an event occurring, but this probability changes as events occur. For example, suppose a scientist publishes a paper. Her rate of productivity may go up as a result of contagion from the initial publication. She might receive additional resources as a result of her success which will lead to further increases in productivity. A second scientist, who had the same initial rate of productivity, would have his rate stay the same so long as he did not publish. The process is contagious in the sense that success in publishing increases the rate of future publishing. Contagion violates the independence assumption of the Poisson distribution.

Unobserved heterogeneity and contagion can both generate the same NB distribution of observed counts. Consequently, heterogeneity is sometimes referred to as "spurious" or "apparent" contagion, as opposed to "true" contagion. With cross-sectional data, it is impossible to determine whether the observed distribution of counts arose from true or spurious contagion.

Testing for overdispersion. Remember that, with the PRM, if overdispersion is present then estimates are inefficient and standard errors are biased downward. It is therefore important to test for overdispersion. There are various ways to do this. The approaches described below take advantage of the fact that the PRM is a special case of the NBRM, when $\alpha=0$. Alpha is the dispersion parameter; if it equals 0 there is no over-dispersion.

1. You can do a 1-tailed test of H0: $\alpha=0$. (The test is one-tailed, because $\alpha$ cannot be less than zero.) Stata's nbreg routine reports this for you automatically:
. use https://www3.nd.edu/~rwilliam/statafiles/couart4.dta, clear
(couart4.dta | Long data on Ph.D. biochemists | 2014-04-24)
. nbreg art i.female i.married kid5 phd ment, nolog

| Negative binomial regression | Number of obs | $=$ |
| :--- | :--- | :--- |
| Dispersion $=$ mean | LR chi2 (5) | $=$ |



Likelihood-ratio test of alpha=0: chibar2(01) $=180.20$ Prob>=chibar2 $=0.000$

As we see from the last line of the printout, alpha significantly differs from 0 . Incidentally, what the program actually estimates is $\ln (\mathrm{alpha})$. This forces the estimated alpha to be positive.
2. You can do the LR chi-square test yourself by estimating both the Poisson and NBRM:

```
. quietly poisson art i.female i.married kid5 phd ment, nolog
. est store poisson
quietly nbreg art i.female i.married kid5 phd ment, nolog
est store nbreg
lrtest poisson nbreg, stats force
```


3. You can do a Wald test of $\ln ($ alpha $)=1($ which corresponds to a test of alpha $=0)$ :

```
. test [lnalpha]_cons = 1
( 1) [lnalpha]_cons = 1
```



To confirm this:

$$
\frac{-.8173044-1}{.1199372}=\frac{-1.8173044}{.1199372}=15.15213295
$$

Square the above and you get 229.59

Clearly, overdispersion is a problem with the PRM in this case, and the NBRM should be preferred. This side by side comparison of the PRM and NBRM further illustrates the point:

```
. est table poisson nbreg, t varlabel varwidth(32) stats(alpha N) b (%9.3f)
```



As we see, the Poisson distribution consistently has higher $t$ values than the NBREG distribution. The Poisson estimates are less precise and you are more likely to conclude that an effect differs from zero when in reality it does not.

Optional: Interpretation. Interpretation of the NBRM is pretty much the same as the PRM. Using the margins command,


Note: dy/dx for factor levels is the discrete change from the base level.
Using the listcoef command,

```
listcoef
nbreg (N=915): Factor change in expected count
    Observed SD: 1.9261
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & b & z & P> \(\mid\) z | & \(e^{\wedge} \mathrm{b}\) & \(e^{\wedge} \mathrm{b}\) StdX & SDofx \\
\hline \multicolumn{7}{|l|}{female} \\
\hline Female & -0.2164 & -2.978 & 0.003 & 0.805 & 0.898 & 0.499 \\
\hline \multicolumn{7}{|l|}{married |} \\
\hline Married & 0.1505 & 1.833 & 0.067 & 1.162 & 1.074 & 0.473 \\
\hline kid5 & -0.1764 & -3.325 & 0.001 & 0.838 & 0.874 & 0.765 \\
\hline phd & 0.0153 & 0.424 & 0.672 & 1.015 & 1.015 & 0.984 \\
\hline mentor & 0.0291 & 8.381 & 0.000 & 1.030 & 1.318 & 9.484 \\
\hline constant & 0.2561 & 1.849 & 0.065 & . & . & . \\
\hline \multicolumn{7}{|l|}{alpha} \\
\hline lnalpha & -0.8173 & . & . & . & . & \\
\hline alpha & 0.4416 & . & . & . & . & . \\
\hline
\end{tabular}
```

Perhaps the most helpful column is $\mathrm{e}^{\wedge} \mathrm{b}$ (which you can also get by specifying the irr option on nbreg). If you prefer, you can get equivalent results with the percent option:
. listcoef, percent
nbreg ( $\mathrm{N}=915$ ): Percentage change in expected count
Observed SD: 1.9261


Looking at the $\%$ column, we see that, on an all other things equal basis, women are $19.5 \%$ less productive than men; married people are $16.2 \%$ more productive; each additional child lowers productivity by $16.2 \%$ (again, remember to compound, not add, for units greater than 1, e.g. somebody with 3 kids would have a rate $.8383^{2}=$ $58.9 \%$ as great as somebody with no children); each additional article by a mentor adds $3 \%$ productivity.

See Long and Freese (2014) for additional examples, or else try the commands yourself. There aren't many new surprises here given what we have gone over before.

## Appendix: Advanced Models for Count Outcomes (Optional)

This appendix briefly covers more advanced count models that are sometimes needed. You should read Long \& Freese or other sources if you need to better understand or use these models. The models discussed are

- Zero Truncated Models - these are used when the sample selection procedures exclude cases with 0 counts. For example, we may not have a list of every Sociologist; we only have a list of those who have published at least one article.
- Hurdle Models - Sometimes you may believe that zeros are generated by a different process from that of positive counts. Zero is a "hurdle" that you have to get past before reaching positive counts (but everyone has a nonzero probability of doing so). Hurdle regression models combine a binary model (e.g. logit) to predict zeros with a zerotruncated Poisson or zero-truncated negative binomial model to predict nonzero counts.
- Zero-Inflated Count Models - Zero-inflated models assume that there are two latent groups. One group has no chance of going beyond zero, e.g. they might be scientists in fields or companies that do not allow publishing. We call this Group A, the Always Zero Group. Members of the other group may have a zero count, but the probability of having a positive count is nonzero, e.g. a scientist who could publish may or may not do so. We call this Group -A, the Not Always Zero Group. Zero-Inflated models allow for this possibility, thereby increasing the conditional variance and the probability of zero counts.


## Models for Truncated Counts

Sometimes observations with outcomes equal to zero are missing from the sample because of the way the data are collected. For example, we may not have a list of every Sociologist; we only have a list of those who have published at least one article. Or, a survey of how often people visit the shopping mall may be done of people who are currently at the mall. Of, if you have bought a TV, the warranty card may ask you how many other TVs you have. In each case, observations with a value of 0 are not included in the sample. Zero-truncated count models are designed for such situations.

Long \& Freese (2014) go through the math on pp. 519-520. A key thing to note is that the adverse effects of over-dispersion are worse with truncated models. Estimates are biased and inefficient if there is overdispersion. You should estimate a zero-truncated negative binomial model to test for overdispersion.

The ztp (zero truncated Poisson) and ztnb (zero truncated negative binomial) commands can be used. Output is similar to the poisson and nbreg commands. If zero counts are missing from your data because of the way the data were collected, and zero counts are generated by the same process as positive counts, interpretation is also similar.

NOTE: In Stata 12, these commands were replaced by tpoisson and tnbreg. Their main advantage is that you can specify a truncation point other than zero.

NOTE: There is also a user-written command for right-censored data called rcpoisson. Quoting from the article that introduced the command,

For example, a researcher who is interested in alcohol consumption patterns among male college students may define binge drinking as "five or more drinks in one sitting" and may code the dependent variable as $0,1,2, \ldots, 5$ or more drinks. In this case, the number of drinks consumed will be censored at five... Applying a traditional Poisson regression model to censored data will produce biased and inconsistent estimates. Intuitively, when the data are right-censored, large values of the dependent variable are coded as small and the conditional mean of the dependent variable and the marginal effects will be attenuated.

## Hurdle Models

Sometimes you may believe that zeros are generated by a different process from that of positive counts. Zero is a "hurdle" that you have to get past before reaching positive counts (but everyone has a nonzero probability of doing so). Hurdle regression models combine a binary model (e.g. logit) to predict zeros with a zero-truncated Poisson or zero-truncated negative binomial model to predict nonzero counts.

Long \& Freese (2014) show how to estimate hurdle models, even though there is no "official" Stata command for doing so. (There are some user-written commands by the late Joe Hilbe, but I am not sure they still work correctly.) Compare the following results with those reported by Long \& Freese (2014) on p. 530:

```
. * Hurdle Models - Adapted from Long & Freese 3rd edition, section 9.5
. use https://www3.nd.edu/~rwilliam/statafiles/couart4, clear
(couart4.dta | Long data on Ph.D. biochemists | 2014-04-24)
```

```
. * Run logit model. Nonzero values are treated as 1s by logit command.
```

. * Run logit model. Nonzero values are treated as 1s by logit command.
. quietly logit art female married kid5 phd mentor, or nolog
. quietly logit art female married kid5 phd mentor, or nolog
. est store Hlogit
. est store Hlogit
. * Run Zero-truncated nbreg. Keep cases where articles are > 0
. * Run Zero-truncated nbreg. Keep cases where articles are > 0
. quietly ztnb art female married kid5 phd mento if art>0, nolog irr
. quietly ztnb art female married kid5 phd mento if art>0, nolog irr
. est store Hztnb
. est store Hztnb
. * You need suest to get the standard errors right.

```
. * You need suest to get the standard errors right.
```

| Simultaneous results for Hlogit, Hztnb |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Number of obs |  | 915 |
|  | expB | Robust Std. Err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Con | Interval] |
| Hlogit_art |  |  |  |  |  |  |
| female | . 7779048 | . 1215446 | -1.61 | 0.108 | . 5727031 | 1.056631 |
| married | 1.385739 | . 2475798 | 1.83 | 0.068 | . 9763455 | 1.966796 |
| kid5 | . 7518272 | . 0831787 | -2.58 | 0.010 | . 6052643 | . 93388 |
| phd | 1.022468 | . 0822485 | 0.28 | 0.782 | . 8733296 | 1.197075 |
| mentor | 1.083419 | . 0154716 | 5.61 | 0.000 | 1.053515 | 1.114171 |
| _cons | 1.267183 | . 3694752 | 0.81 | 0.417 | . 7155706 | 2.244016 |
| Hztnb_art |  |  |  |  |  |  |
| female | . 7829619 | . 0724833 | -2.64 | 0.008 | . 6530404 | . 9387312 |
| married | 1.108954 | . 1169726 | 0.98 | 0.327 | . 9018383 | 1.363636 |
| kid5 | . 8579072 | . 0626125 | -2.10 | 0.036 | . 743562 | . 9898365 |
| phd | . 9970707 | . 0504934 | -0.06 | 0.954 | . 9028585 | 1.101114 |
| mentor | 1.024022 | . 0050724 | 4.79 | 0.000 | 1.014129 | 1.034012 |
| _cons | 1.426359 | . 27488 | 1.84 | 0.065 | . 9776649 | 2.080979 |
| /Hztnb |  |  |  |  |  |  |
| lnalpha | . 5469076 | . 1302053 |  |  | . 3429761 | . 8720957 |

## . * See Long \& Freese section 9.5 for computing predictions, using margins

The logit equation tells you what affects the likelihood of clearing the zero "hurdle." Women, and those with kids under 5 , are less likely to clear the hurdle. Married people, those who went to more prestigious PHD institutions, and those whose mentors are more productive are more likely to clear the hurdle. (Not all effects are significant though.)

In the zero-truncated negative binomial part of the model, the coefficients indicate whether increases in the variable increase or decrease productivity. A variable can be significant in one part of the model, but not in the other part.

Long \& Freese (2014) show how to run margins and get the predicted probabilities of different counts, e.g. 0 articles, one article, etc. If you want them you have to use Long and Freese's rather lengthy but straightforward procedure.

## Zero-Inflated Count Models

Zero-inflated models assume that there are two latent groups. One group has no chance of going beyond zero, e.g. they might be scientists in fields or companies that do not allow publishing. We call this Group A, the Always Zero Group. Members of the other group may have a zero count, but the probability of having a positive count is nonzero, e.g. a scientist who could publish may or may not do so. We call this Group -A, the Not Always Zero Group. Zero-Inflated models allow for this possibility, thereby increasing the conditional variance and the probability of zero counts.

Estimating such models is a 3-step process. First, you model membership into the latent groups. Then, you model the counts for those in Group - A (Not Always Zero). Finally, you compute observed probabilities as a mixture of the probabilities for the two groups.

The commands are zip and zinb. They include an inflate option. The vars specified in the inflate option are used to predict group membership.

Long and Freese give examples and show how to make interpretation of results easier.
NOTE: Paul Allison (http://www.statisticalhorizons.com/zero-inflated-models) asks "Do we really need zero-inflated models?" He says

In all data sets that I've examined, the negative binomial model fits much better than a ZIP model, as evaluated by AIC or BIC statistics. And it's a much simpler model to estimate and interpret. So if the choice is between ZIP and negative binomial, I'd almost always choose the latter.

But what about the zero-inflated negative binomial (ZINB) model? It's certainly possible that a ZINB model could fit better than a conventional negative binomial model regression model. But the latter is a special case of the former, so it's easy to do a likelihood ratio test to compare them (by taking twice the positive difference in the log-likelihoods). In my experience, the difference in fit is usually trivial...

So next time you're thinking about fitting a zero-inflated regression model, first consider whether a conventional negative binomial model might be good enough. Having a lot of zeros doesn't necessarily mean that you need a zero-inflated model.

## Comparisons of Count Models

Long \& Freese's count fit command makes it easy to compare the results of PRM, NBRM, ZIP, and ZINB models.
. use http://www.indiana.edu/~jslsoc/stata/spex_data/couart4, clear (couart4.dta | Long data on Ph.D. biochemists | 2014-04-24)
countfit art i.female i.married kid5 phd mentor, inflate(mentor i.female) replace


Comparison of Mean Observed and Predicted Count

| Model | Maximum Difference | $\begin{gathered} \text { At } \\ \text { Value } \end{gathered}$ | Mean <br> \|Diff| |
| :---: | :---: | :---: | :---: |
| PRM | 0.091 | 0 | 0.026 |
| NBRM | -0.015 | 3 | 0.006 |
| ZIP | 0.052 | 1 | 0.014 |
| ZINB | -0.019 | 3 | 0.008 |

PRM: Predicted and actual probabilities

| Count | Actual | Predicted | \| Diff| | Pearson |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0.301 | 0.209 | 0.091 | 36.489 |
| 1 | 0.269 | 0.310 | 0.041 | 4.962 |
| 2 | 0.195 | 0.242 | 0.048 | 8.549 |
| 3 | 0.092 | 0.135 | 0.043 | 12.483 |
| 4 | 0.073 | 0.061 | 0.012 | 2.174 |
| 5 | 0.030 | 0.025 | 0.005 | 0.760 |
| 6 | 0.019 | 0.010 | 0.009 | 6.883 |
| 7 | 0.013 | 0.004 | 0.009 | 17.815 |
| 8 | 0.001 | 0.002 | 0.001 | 0.300 |
| 9 | 0.002 | 0.001 | 0.001 | 1.550 |
| Sum | 0.993 | 0.999 | 0.259 | 91.964 |

NBRM: Predicted and actual probabilities

| Count | Actual | Predicted | \| Diff| | Pearson |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0.301 | 0.304 | 0.003 | 0.028 |
| 1 | 0.269 | 0.272 | 0.003 | 0.039 |
| 2 | 0.195 | 0.180 | 0.014 | 1.066 |
| 3 | 0.092 | 0.106 | 0.015 | 1.818 |
| 4 | 0.073 | 0.060 | 0.013 | 2.753 |
| 5 | 0.030 | 0.033 | 0.004 | 0.348 |
| 6 | 0.019 | 0.018 | 0.000 | 0.004 |
| 7 | 0.013 | 0.010 | 0.003 | 0.719 |
| 8 | 0.001 | 0.006 | 0.005 | 3.593 |
| 9 | 0.002 | 0.004 | 0.001 | 0.456 |
| Sum | 0.993 | 0.993 | 0.062 | 10.824 |


| Count | Actual | Predicted | \| Diff| | Pearson |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0.301 | 0.298 | 0.003 | 0.022 |
| 1 | 0.269 | 0.217 | 0.052 | 11.526 |
| 2 | 0.195 | 0.210 | 0.016 | 1.095 |
| 3 | 0.092 | 0.142 | 0.050 | 16.281 |
| 4 | 0.073 | 0.076 | 0.002 | 0.071 |
| 5 | 0.030 | 0.034 | 0.005 | 0.612 |
| 6 | 0.019 | 0.014 | 0.005 | 1.346 |
| 7 | 0.013 | 0.005 | 0.008 | 9.840 |
| 8 | 0.001 | 0.002 | 0.001 | 0.447 |
| 9 | 0.002 | 0.001 | 0.001 | 1.985 |
| Sum | 0.993 | 0.999 | 0.143 | 43.225 |

ZINB: Predicted and actual probabilities

| Count | Actual | Predicted | \| Diff| | Pearson |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0.301 | 0.312 | 0.012 | 0.396 |
| 1 | 0.269 | 0.256 | 0.013 | 0.611 |
| 2 | 0.195 | 0.181 | 0.014 | 0.981 |
| 3 | 0.092 | 0.110 | 0.019 | 2.889 |
| 4 | 0.073 | 0.063 | 0.010 | 1.524 |
| 5 | 0.030 | 0.035 | 0.005 | 0.709 |
| 6 | 0.019 | 0.019 | 0.000 | 0.004 |
| 7 | 0.013 | 0.010 | 0.003 | 0.710 |
| 8 | 0.001 | 0.006 | 0.005 | 3.397 |
| 9 | 0.002 | 0.003 | 0.001 | 0.302 |
| Sum | 0.993 | 0.995 | 0.081 | 11.522 |


| PRM | $\mathrm{BIC}=$ | 3343.026 | AIC= | 3314.113 | Prefer | Over | Evidence |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| vs NBRM | $\mathrm{BIC}=$ AIC= <br> LRX2= | $\begin{array}{r} 3169.649 \\ 3135.917 \\ 180.196 \end{array}$ | dif= dif= <br> prob= | $\begin{array}{r} 173.377 \\ 178.196 \\ 0.000 \end{array}$ | NBRM NBRM NBRM | $\begin{aligned} & \text { PRM } \\ & \text { PRM } \\ & \text { PRM } \end{aligned}$ | Very strong $\mathrm{p}=0.000$ |
| vs ZIP | $\begin{aligned} & \text { BIC= } \\ & \text { AIC= } \\ & \text { Vuong= } \end{aligned}$ | $\begin{array}{r} 3272.659 \\ 3229.288 \\ =\quad 4.133 \end{array}$ | dif= <br> dif= <br> prob= | $\begin{array}{r} 70.367 \\ 84.824 \\ 0.000 \end{array}$ | $\begin{aligned} & \text { ZIP } \\ & \text { ZIP } \\ & \text { ZIP } \end{aligned}$ | $\begin{aligned} & \text { PRM } \\ & \text { PRM } \\ & \text { PRM } \end{aligned}$ | Very strong $\mathrm{p}=0.000$ |
| vs ZINB | $\begin{aligned} & \mathrm{BIC}= \\ & \mathrm{AIC}= \end{aligned}$ | $\begin{aligned} & 3172.257 \\ & 3124.068 \end{aligned}$ | $\begin{aligned} & \operatorname{dif}= \\ & \text { dif= } \end{aligned}$ | $\begin{aligned} & 170.769 \\ & 190.045 \end{aligned}$ | $\begin{aligned} & \text { ZINB } \\ & \text { ZINB } \end{aligned}$ | $\begin{aligned} & \text { PRM } \\ & \text { PRM } \end{aligned}$ | Very strong |
| NBRM | $\mathrm{BIC}=$ | 3169.649 | AIC= | 3135.917 | Prefer | Over | Evidence |
| vs ZIP | $\begin{aligned} & \mathrm{BIC}= \\ & \mathrm{AIC}= \end{aligned}$ | $\begin{aligned} & 3272.659 \\ & 3229.288 \end{aligned}$ | $\begin{aligned} & \operatorname{dif}= \\ & \operatorname{dif}= \end{aligned}$ | $\begin{array}{r} -103.010 \\ -93.372 \end{array}$ | NBRM NBRM | $\begin{aligned} & \text { ZIP } \\ & \text { ZIP } \end{aligned}$ | Very strong |
| vs ZINB | BIC= <br> AIC= <br> Vuong= | $\begin{array}{r} 3172.257 \\ 3124.068 \\ =\quad 2.069 \end{array}$ | dif= <br> dif= <br> prob= | $\begin{array}{r} -2.608 \\ 11.849 \\ 0.019 \end{array}$ | $\begin{aligned} & \text { NBRM } \\ & \text { ZINB } \\ & \text { ZINB } \end{aligned}$ | ZINB NBRM NBRM | $\begin{aligned} & \text { Positive } \\ & \mathrm{p}=0.019 \end{aligned}$ |
| ZIP | $\mathrm{BIC}=$ | 3272.659 | AIC= | 3229.288 | Prefer | Over | Evidence |
| vs ZINB | $\begin{aligned} & \mathrm{BIC}= \\ & \mathrm{AIC}= \\ & \text { LRX2= } \end{aligned}$ | $\begin{array}{r} 3172.257 \\ 3124.068 \\ 107.221 \end{array}$ | dif= <br> dif= <br> prob= | $\begin{array}{r} 100.402 \\ 105.221 \\ 0.000 \end{array}$ | $\begin{aligned} & \text { ZINB } \\ & \text { ZINB } \\ & \text { ZINB } \end{aligned}$ | $\begin{aligned} & \text { ZIP } \\ & \text { ZIP } \\ & \text { ZIP } \end{aligned}$ | Very strong $p=0.000$ |

Both the NBRM \& ZINB consistently fit better than either the PRM or ZIP. BIC favors NBRM; AIC likes ZINB.


## Additional Reading

Sometimes you may want to do a regression where the dependent variable is the $\log$ of $y$ rather than y. For example, you might want to use the log of income. In such instances, William Gould (President of Stata Corp) suggests that you may want to use poisson rather than regress. He explains why and how at
http://blog.stata.com/2011/08/22/use-poisson-rather-than-regress-tell-a-friend/
Paul Allison questions the need for zero-inflated models. He says that Negative Binomial Regression models often might be good enough. See
http://statisticalhorizons.com/zero-inflated-models
We haven't talked about fixed effects models yet. But Allison expresses concern about some of the approaches commonly used for Fixed Effects Negative Binomial Regression. See
http://statisticalhorizons.com/fe-nbreg

