
 Multiple Regression - Introduction 
 

We will add a 2nd independent variable to our previous example.  Data are collected 
from 20 individuals on their years of education (X1), years of job experience (X2), and annual 
income in thousands of dollars (Y).  The data are as follows: 
 

 
X1

 
X2

 
Y 

 
X1Y 

 
X2Y 

 
X1X2

 
X15 

 
X25 

 
Y5 

 
2 

 
9 

 
5.0 

 
10.0 

 
45.0 

 
18 

 
4 

 
81 

 
25.00 

 
4 

 
18 

 
9.7 

 
38.8 

 
174.6 

 
72 

 
16 

 
324 

 
94.09 

 
8 

 
21 

 
28.4 

 
227.2 

 
596.4 

 
168 

 
64 

 
441 

 
806.56 

 
8 

 
12 

 
8.8 

 
70.4 

 
105.6 

 
96 

 
64 

 
144 

 
77.44 

 
8 

 
14 

 
21.0 

 
168.0 

 
294.0 

 
112 

 
64 

 
196 

 
441.00 

 
10 

 
16 

 
26.6 

 
266.0 

 
425.6 

 
160 

 
100 

 
256 

 
707.56 

 
12 

 
16 

 
25.4 

 
304.8 

 
406.4 

 
192 

 
144 

 
256 

 
645.16 

 
12 

 
9 

 
23.1 

 
277.2 

 
207.9 

 
108 

 
144 

 
81 

 
533.61 

 
12 

 
18 

 
22.5 

 
270.0 

 
405.0 

 
216 

 
144 

 
324 

 
506.25 

 
12 

 
5 

 
19.5 

 
234.0 

 
97.5 

 
60 

 
144 

 
25 

 
380.25 

 
12 

 
7 

 
21.7 

 
260.4 

 
151.9 

 
84 

 
144 

 
49 

 
470.89 

 
13 

 
9 

 
24.8 

 
322.4 

 
223.2 

 
117 

 
169 

 
81 

 
615.04 

 
14 

 
12 

 
30.1 

 
421.4 

 
361.2 

 
168 

 
196 

 
144 

 
906.01 

 
14 

 
17 

 
24.8 

 
347.2 

 
421.6 

 
238 

 
196 

 
289 

 
615.04 

 
15 

 
19 

 
28.5 

 
427.5 

 
541.5 

 
285 

 
225 

 
361 

 
812.25 

 
15 

 
6 

 
26.0 

 
390.0 

 
156.0 

 
90 

 
225 

 
36 

 
676.00 

 
16 

 
17 

 
38.9 

 
622.4 

 
661.3 

 
272 

 
256 

 
289 

 
1,513.21 

 
16 

 
1 

 
22.1 

 
353.6 

 
22.1 

 
16 

 
256 

 
1 

 
488.41 

 
17 

 
10 

 
33.1 

 
562.7 

 
331.0 

 
170 

 
289 

 
100 

 
1,095.61 

 
21 

 
17 

 
48.3 

 
1,014.3 

 
821.1 

 
357 

 
441 

 
289 

 
2,332.89 

 
TX1 = 

241 

 
TX2 = 

253 

 
TY = 

488.3 

 
TX1Y= 

6,588.3 

 
TX2Y= 

6448.9 

 
TX1X2 = 

2999 

 
TX15 = 
3,285 

 
TX25 = 
3,767 

 
TY5 = 

13,742.27 
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Here is an SPSS-PC analysis of the above: 
Control cards: 
 
DATA LIST FREE / Educ JobExp Income. 
BEGIN DATA. 
    2      9      5.0 
    4     18      9.7 
    8     21     28.4 
    8     12      8.8 
    8     14     21.0 
   10     16     26.6 
   12     16     25.4 
   12      9     23.1 
   12     18     22.5 
   12      5     19.5 
   12      7     21.7 
   13      9     24.8 
   14     12     30.1 
   14     17     24.8 
   15     19     28.5 
   15      6     26.0 
   16     17     38.9 
   16      1     22.1 
   17     10     33.1 
   21     17     48.3 
END DATA. 
REGRESSION /DESCRIPTIVES ALL /STATISTICS ALL/DEPENDENT INCOME 
           /METHOD ENTER EDUC JOBEXP/ SCATTERPLOT (EDUC JOBEXP) / 
           /SCATTERPLOT (INCOME EDUC) / SCATTERPLOT (INCOME JOBEXP)/ 
           /SCATTERPLOT (INCOME *PRED) / . 

 
 
Selected output: 
 

Descriptive Statistics

24.4150 9.78835 95.81187 20
12.0500 4.47772 20.05000 20
12.6500 5.46062 29.81842 20

INCOME
EDUC
JOBEXP

Mean Std. Deviation Variance N

 
Correlations

1.000 .846 .268
.846 1.000 -.107
.268 -.107 1.000

95.812 37.068 14.311
37.068 20.050 -2.613
14.311 -2.613 29.818

. .000 .127
.000 . .327
.127 .327 .

1820.425 704.285 271.905
704.285 380.950 -49.650
271.905 -49.650 566.550

20 20 20
20 20 20
20 20 20

INCOME
EDUC
JOBEXP
INCOME
EDUC
JOBEXP
INCOME
EDUC
JOBEXP
INCOME
EDUC
JOBEXP
INCOME
EDUC
JOBEXP

Pearson Correlation

Covariance

Sig. (1-tailed)

Sum of Squares and
Cross-products

N

INCOME EDUC JOBEXP
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Model Summaryb

.919a .845 .827 4.07431 .845 46.332 2 17 .000 58.938 .210 3.000 61.925
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

R Square
Change F Change df1 df2 Sig. F Change

Change Statistics
Akaike

Information
Criterion

Amemiya
Prediction
Criterion

Mallows'
Prediction
Criterion

Schwarz
Bayesian
Criterion

Selection Criteria

Predictors: (Constant), JOBEXP, EDUCa. 

Dependent Variable: INCOMEb. 
 

ANOVAb

1538.225 2 769.113 46.332 .000a

282.200 17 16.600
1820.425 19

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), JOBEXP, EDUCa. 

Dependent Variable: INCOMEb. 
 

Coefficientsa

-7.097 3.626 -1.957 .067 -14.748 .554
1.933 .210 .884 .096 9.209 .000 1.490 2.376 .846 .913 .879 .989 1.012
.649 .172 .362 .096 3.772 .002 .286 1.013 .268 .675 .360 .989 1.012

(Constant)
EDUC
JOBEXP

Model
1

B Std. Error

Unstandardized
Coefficients

Beta Std. Error

Standardized
Coefficients

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Zero-order Partial Part
Correlations

Tolerance VIF
Collinearity Statistics

Dependent Variable: INCOMEa. 
 

 
 

Here are the scatterplots for the different variables we are examining.  These will 
hopefully give you a better idea about how these variables are related to each other, and what r5 
and strength of association means. 
 
1. Education by job experience: (r = -.107).  Note how there is almost no pattern to the dots, 
which is consistent with the very weak association between these variables. 
 

Scatterplot

Dependent Variable: INCOME
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2. Education by Income (r = .846).  There is a much clearer and stronger linear association 
here. 
 
 

Scatterplot

Dependent Variable: INCOME
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3. Job experience by income (r = .268).  There appears to be linear association here, but, as 
the lower r would indicate, it does not seem to be as strong as was the case with education and 
income. 
 

Scatterplot
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4. Predicted income by income (r = .919).  This is a plot of ŷ by y.  As the r value suggests, 
the linear association is very clear (even more so than was the case with education and income), 
although not perfect. 
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Scatterplot

Dependent Variable: INCOME

Regression Predicted Value
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a. Determine 2ˆ Xµ , SSTX2, s5X2, sX2, SPX1X2, sX1X2, SPX2Y, sX2Y. 
 
Comment.  The means, standard deviations, etc. for X1 and Y are the same as before.   
 
Solution. 

2ˆ Xµ = Σ X2 / N = 253/20 = 12.65, 
SSTX2 = Σ X25 – (Σ X2)2/N = (3,767 - 2532) = (3,767 - 3200.45) = 566.55, 
s5X2 = SSTX2/(N - 1) = 566.55/19 = 29.82, 
sX2 = 5.46 

 
SPX1X2 = Σ X1X2 - Σ X1 Σ X2/N = (2,999 – 241 * 253 / 20) = (2,999 - 3048.65) = -49.65, 
sX1X2 = SPX1X2/(N - 1) = -49.65 / 19 = -2.613 

 
SPX2Y = Σ X2Y - Σ X2 Σ Y/N = (6,448.9 – 253 * 488.3 / 20) = (6,448.9 - 6176.995) = 

271.905, 
sX2Y = SPX2Y/(N - 1) = 271.905 / 19 = 14.31 
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b. Compute a, b1, and b2. [VERY IMPORTANT] 
 
Comment.  The formulas are 
 

)*  b( - )*  b( -  = a
 

SP  )SST*  SST(
)SP*  SP(  )SP*  SST( = 

s  )s*  s(
)s*  s(  )s*  s(

 = b

 
SP - )SST*  SST(

)SP*  SP( - )SP*  SST( = 
s - )s*  s(

)s*  s( - )s*  s(
 = b

2211y

2
X1X2X1X

X1YX1X2X2YX1
2
12

2
1

2
2

y112y2
2
1

2

2
X1X2X2X

X2YX1X2X1YX2
2
12

2
2

2
1

y212y1
2
2

1

µµµ ˆˆˆ

2

1

−−
 

 
Two Independent Variables - Proof [Optional].   
 

yi = a + b1x1i + b2x2i + ei
 
==> yi - y_ = a + b1x1i + b2x2i + ei - y_  (subtract y_ from both sides) 
 
==> Σ(yi - y_) = Σ(b1(x1i - x_1) + b2(x2i - x_2) )  (substitute for a, sum all cases) 
 
==> SPy1 = b1 * SSTX1 + b2 * SP12,   (multiply by x1i - x_1) 

SPy2 = b1 * SP12 + b2 * SSTX2   (multiply by x2i - x_2) 
 
==> b1 = (SPy1 - b2 * SP12)/SSTX1,   (from the last 2 equations) 

b2 = (SPy2 - b1 * SP12)/SSTX2
 
At this point, we substitute the value for b2 into the b1 equation: 

SST*  SST
)SP*  b( + )SP*  SP(  )SP*  SST(

 = 

 
SST

SP*  
SST

SP*  b  SP  SP
 = b

XX

2
12112Y2Y1X

X

12
X2

121Y2
Y1

1

21

2

1

 

 
(In the latter step, we multiply both numerator and denominator by SSTX2). 
We now need to isolate b1 on the left-hand side.  First, we multiply both sides by the right-hand 
denominator: 
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)SP*  b( + )SP*  SP(  )SP*  SST( = SST*  SST*  b 2
12112Y2Y1XXX1 221

 

We now subtract b1 * SP125 from both sides: 

)SP*  SP(  )SP*  SST( = )SP  SST*  SST(*  b 12Y2Y1X
2
12XX1 221

 

 
Now we simply divide both sides by (SSTX1 * SSTX2 - SP125), yielding the formula for b1 given 
originally.  Through a similar process, we can prove the formula for b2. 
 
Though the change in formulas between the bivariate and multivariate case may seem 
inexplicable, there is a logic and consistent pattern behind the formulas.  Fully understanding 
this logic, however, requires knowledge of matrix algebra.  In case you happen to know matrix 
algebra:  if X0i = 1 for all cases, then it is very easy to show that b = (X'X)-1X'Y.  See Hayes, 
Appendix D, if you want more information on this. 
 
Any number of IVs - Proof that b = (X'X)-1X'Y [Optional].  Let X be an N x K matrix (i.e. N 
cases, each of which has K X variables, including X0.)  Y is an N x 1 matrix.  e is an N x 1 
matrix.  Then, if the assumptions of OLS regression are met, 
 
Y = Xb + e  

Y – e = Xb Subtract e from both sides 

X’(Y – e) = X’Xb Premultiply both sides by X’ 

X’Y = X’Xb If the assumptions of OLS regression are met, 
X’e = 0 because the Xs are uncorrelated with 
the residuals of Y 

(X’X)-1X’Y = (X’X)-1X’Xb Premultiply both sides by (X’X)-1

(X’X)-1X’Y = b  (X’X)-1X’X = I and Ib = b 
 
 
 
Solution. 
 

b1 = (s25 * sy1 - s12 * sy2) / (s15 * s25 - s125) = 
(29.82 * 37.07 - -2.61 * 14.31) / (20.05 * 29.82 - -2.615) = 
1142.78 / 591.08 = 1.933; or, 

b1 = (SSTX2 * SPX1Y - SPX1X2 * SPX2Y) / (SSTX1 * SSTX2 - SPX1X25) = 
(566.55 * 704.285 - -49.65 * 271.905) / (380.95 * 566.55 - -49.655) = 
412512.75/213362.1 = 1.933 
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b2 = (s15 * sy2 - s12 * sy1) / (s25 * s15 - s125) = 
(20.05 * 14.31 - -2.61 * 37.07) / (29.82 * 20.05 - -2.615) = 
383.67 / 591.08 = .649; or, 

b2 = (SSTX1 * SPX2Y - SPX1X2 * SPX1Y) / (SSTX2 * SSTX1 - SPX1X25) = 
(380.95 * 271.905 - -49.65 * 704.285) / (566.55 * 380.95 - -49.655) = 
138549.96/213362.1 = .649 
 

a = Yµ̂ - b1 * 1ˆ Xµ - b2 * 2ˆ Xµ = 24.415 - 1.933 * 12.05 - .649 * 12.65 = 
24.415 - 23.29265 - 8.20985 = -7.0875  

 
c. Compute SSR and SSE.  [NECESSARY EVIL] 
 
Comment.  The formulas are 
 

 SSR SST= e = )y y( = SSE

 

SST =   SSE SST= 1)  (N*  )s*  b + s*  b( = 
 

SP*  b + SP*  b = 
 

1)  (N*  )s*  bb2 + s*  b + s*  b( = 
 

SP*  bb2 + SST*  b + SST*  b = 
 

)y y( = SSR

2
i

2
ii

yYX2YX1

YX2YX1

XX21
2
X

2
2

2
X

2
1

XX21X
2
2X

2
1

2
i

21

21

2121

2121

−∑−∑

−

−

−∑

ˆ

ˆ

ˆ

 

 
 
For a proof of one of the above, note that, according to the rules for expectations, 
ŷ = a + b1x1 + b2x2 ==> v(ŷ) = b15sX15 + b25sX25 + 2b1b2sX1X2. 
 
Solution. 

SSR = b15 * SSTX1 + b25 * SSTX2 + 2b1b2SPX1X2  
= 1.9335 * 380.95 + .6495 * 566.55 + 2 * 1.933 * .649 * -49.65 = 1537.47; or, 

SSR = (b15sX15 + b25sX25 + 2b1b2sX1X2) * (N - 1) 
= 1.9335 * 20.05 + .6495 * 29.82 + 2 * 1.933 * .649 * -2.613 * 19 = 1537.49; or, 

SSR = b1 * SPX1Y + b2 * SPX2Y = 1.933 * 704.285 + .649 * 271.905 = 1537.85; or, 
SSR = (b1 * sX1Y + b2 * sX2Y) * (N - 1) = (1.933 * 37.068 + .649 * 14.31) * 19 = 1537.85 

 
SSE = SST - SSR = 1820.425 - 1537.47 = 282.96 
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d. Compute the (sample) standard error of the estimate (SEE or se).  [FAIRLY 
IMPORTANT] 
 
Comment. The formula for the SEE is the same as in the bivariate case; however, K = 2 in this 
example, since there are two independent variables. 
 

MSE = 
1 - K - N

SSE = se  

 
As before, se is the standard deviation of the residuals.  The value of se can be interpreted in a 
manner similar to the sample standard deviation of the values of x about x .  Given that εi - N(0, 
σε5), then approximately 68.3% of the observations will fall within "1se units of the regression 
line, 95.4% will fall within " 2se units, and 99.7% will fall within "3se unit.  Using this gives 
one a good indication of the fit of the regression line to the sample data.   
  
Solution. 

se = %(SSE/(N - K - 1)) = %(282.96/17) = 4.08 
  
 
e. Compute sbk, k = 1, K, the standard errors of the regression coefficients bk. 
[IMPORTANT] 
 
Comment. sbk is a measure of the amount of sampling error in the regression coefficient bk, just 
as sx_ is a measure of the sampling variability in x_.  The formula is 
 

s
s*  s = 

s
s*  

1) - K - (N*  )r - (1
r - 1

 = 

 

1) - K - (N*  1) - (N*  s*  )r - (1
SSE = 

1) - (N*  s*  )r - (1
s = 

 

1) - K - (N*  SST*  )r - (1
SSE = 

SST*  )r - (1
s = s

x

y
b

x

y
2
12

2
y12

2
x

2
12

2
x

2
12

e

x
2
12x

2
12

e
b

k

k

k

kk

kk

k

′

 

 
Once we have sbk, we will be able to proceed much the same as we do when we conduct tests 
concerning the population mean.  A t-test (with N - 3 d.f., since a, b1 and b2 have been estimated) 
can be used to test the null hypothesis H0: ßk = ß0.  This test is very similar to the t-test about a 
population mean, as we are again testing a mean (ßk), the population is assumed to be normal 
(the εi's) and the population standard deviation is unknown.  In the present case, the sample 
statistic is b (rather than x ) and the sample standard error is sbk. 

 
 Multiple Regression - Introduction - Page 9 



Solution. 

 .210 = 
4.478
9.788*  .096 = 

 
4.478
9.788*  

17*  )107. - (1
.845 - 1 = 

s
s*  

1) - K - (N*  )r - (1
r - 1

 = 

 

.210 = 
17*  380.95*  )107. - (1

282.96 = 
1) - K - (N*  SST*  )r - (1

SSE = 

 

.210 = 
380.95*  )107. - (1

4.08 = 
SST*  )r - (1

s = s

2
x

y
2
12

2
y12

2
x

2
12

2
x

2
12

e
b

1

1

1

1

 

 
 

 
5.461
9.788*  .096 = 

 
5.461
9.788*  

17*  )107.  (1
.845  1 = 

s
s*  

1)  K  (N*  )r  (1
r  1

 = 

 

.172 = 
17*  566.55*  )107.  (1

282.96 = 
1)  K  (N*  SST*  )r  (1

SSE = 

 

.172 = 
566.55*  )107.  (1

4.08 = 
SST*  )r  (1

s = s

2
x

y
2
12

2
y12

2
x

2
12

2
x

2
12

e
b

2

2

2

2

 

 
We will discuss standard errors in greater detail later. 
 
f. Compute the 95% confidence intervals for ßk. [IMPORTANT] 
 
Comment.  Do this the same way you would a c.i. for a population mean, i.e. proceed much as 
you would for single sample tests, case III, σ unknown.  d.f. = N - K - 1 = N - 3.  The c.i. is 
 

s*  t + b     s*  t - b
 

i.e. ,s*  t  b

b/2kkb/2k

b/2k

kk

k

αα

α

β ≤≤

±
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Solution. 
 

95% c.i. for b1 = b1 " tα/2,n-3 * sb1 = b1 " t.025,17 * sb1 = 
1.933 " 2.110 * .210 ==> 
1.490 # ß1 # 2.376 

 
95% c.i. for b2 = b2 " tα/2,n-3 * sb2 = b2 " t.025,17 * sb2 = 
.649 " 2.110 * .172 ==> 
.286 # ß2 # 1.012 

 
Note that 0 does NOT fall in either confidence interval, suggesting the b's significantly 

differ from 0. 
  
 
g. Do a t-test to determine whether b1 significantly differs from 0.  [IMPORTANT] 
 
Comment.  Again, this is very similar to single sample tests, case III. 
 
Solution. 
 

Step 1.  H0: ß1 =  0 
HA: ß1 <> 0 

 
Step 2. An appropriate test stat is 
 

s
b = 

s
  - b = T

b

k

b

kk
1 - K - N

kk

0
β

 

 
In this case, k = 1, DF = 17, and sbk = sb1 = .210. 
 

Step 3.  For α = .05, accept H0 if -2.11 # T17 # 2.11 
 

Step 4.  For b1, the computed value of the test statistic is 
 

9.205 = 
.209
1.933 = 

s
b = 

s
  - b = T

b

k

b

kk
1 - K - N

kk

0
β

 

 
Step 5. Reject H0. 
 

If we repeat the process for b2, we get T17 = .649/.172 = 3.773.  Again, we would reject H0. 
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h. Compute MST, MSR, and MSE. [NECESSARY EVIL] 
 
Comment.  The only trick is figuring out the d.f.  For MST, d.f. = N - 1, for MSR, d.f. = K 
where K is the number of b's that have been estimated (in this case, 2), for MSE d.f. = N - K - 1 
= N - 3 in this case. 
 

s = 
1-K-N

SSE = MSE

 

,
K

SSR = MSR

 

,s = 
1 - N

SST = MST

2
e

2
y

 

 
 

MST = SST/(N-1) = 1820.428/19 = s5Y = 95.81 
MSR = SSR/K = SSR/2 = 1537.47/2 = 768.74, 
MSE = SSE/(N - K - 1) = 282.96/17 = 16.64. Or, 

MSE = s5e = 4.085 = 16.65 
  
 
i. Construct the ANOVA table.  [IMPORTANT FOR THE F VALUE -- AND FOR 
NESTED COMPARISONS] 
 
General format: 
 

 
Source 

 
SS 

 
d.f. 

 
MS 

 
F 

 
Regression (or 
explained) 

 
SSR 

 
K 

 
SSR / K 

 
Error (or 
residual) 

 
SSE 

 
N - K - 1 

 
SSE / (N-K-1) 

 
Total 

 
SST 

 
N - 1 

 
SST / (N - 1) 

 
MSR/MSE 
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For this problem: 
 

 
Source 

 
SS 

 
d.f. 

 
MS 

 
F 

 
Regression (or 
explained) 

 
SSR = 1537.47 

 
K = 2 

 
SSR / K = 
768.74 

 
Error (or 
residual) 

 
SSE = 282.96 

 
N - K - 1 = 17 

 
SSE / (N-K-1) = 
16.64 

 
Total 

 
SST = 1820.43 

 
N - 1 = 19 

 
SST / (N - 1) = 
95.81 

 
MSR/MSE = 
46.20* 
 

 
NOTE: For an F with d.f. = 2,17 and α = .05, accept H0 if F # 3.59.  Also, note that, unlike the 
bivariate regression case, the T-tests and the F-test are not equivalent to each other.  The F-test is 
a test of the hypothesis 
 

H0:  ß1 = ß2 = ... = ßK = 0 
HA:  At least one ßk does not equal 0. 

 
The F-test can also be thought of as a test of 

H0: ρ =  0 
HA: ρ <> 0 

  
 
j. Compute Ryx1x2 and R5yx1x2, i.e. Multiple R and Multiple R2 [IMPORTANT, ALBEIT 
OVER-RATED] 
 
Comment.  R5yx1x2 is the proportion of variance in y that is accounted for, or explained, by X1 
and X2.  r5 is also called the coefficient of determination.  R5yx1x2 represents the strength of the 
linear relationship that is present in the data.  The closer y is to ŷ, the bigger R5yx1x2 will be.  In a 
multiple regression, R and R5 range from 0 to 1.  Ryx1x2 is our estimate of the population 
parameter rho (ρ).  Formulas: 
 

R = SSR/SST = R

 
 SSR/SST,= R

xxy
2

xxy

2
xyx

2121

21

 

 
Solution. 
 

R5yx1x2 = SSR/SST = 1537.47/1820.43 = .845, 

Ryx1x2 = %.845 = .919 
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k. Test whether Ryx1x2 significantly differs from 0. [IMPORTANT] 
 
Comment.  As noted above, the F-test is a test of 

H0: ρ =  0 
HA: ρ <> 0 
 

The t-test procedure we also used in the bivariate regression case is not appropriate when there is 
more than 1 independent variable. 
  
 
l. Alternative formulas for F and R5: [SOMETIMES VERY USEFUL] 
 

K)*  (F + 1) - K - (N
K*  F = R

 

,
K*  )R - (1

1) - K - (N*  R = F

2

2

2

 

 
 
[OPTIONAL] Proof: 
 
R5 = SSR/SST,      [as defined above] 
 
SST/SST = (SSR + SSE)/SST = 1    [substitute for SST] 

= SSR/SST + SSE/SST = R5 + SSE/SST  [rearrange terms, substitute in r5] 
 
==> 1 = R5 + SSE/SST     [from last two lines] 
 
==> SSE/SST = 1 - R5     [substract r5 from both sides] 
 
Further, 
 
F = MSR/MSE = (SSR/K)/(SSE/[N - K - 1])   [defn of F, MSR, MSE] 
 

= SSR * (N - K - 1)    [rearrange terms] 
SSE * K 

= SSR/SST * (N - K - 1)   [divide top and bottom by SST] 
SSE/SST * K 

 
==> F =  R5 * (N - K - 1)    [substitute for SSR/SST and 

SSE/SST] 
 (1 - R5) * K 
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And, for R5, 
 
R5/(1 - R5) = (F * K)/(N - K - 1)    [Multiply both sides by K/(N - K - 1)] 
 
==> (1 - R5)/R5 = (N - K - 1)/(F * K)    [take reciprocals] 
 
==> (1 - R5 + R5)/r5 = ((N - K - 1) + (F * K))/(F * K) [add 1 to both sides] 
 
==> 1/R5 = (F * K)/ ((N - K - 1) + (F * K))/(F * K)  [since 1 - r5 + r5 = 1] 
 
==> R5 = (F * K)/ ([N - K - 1] + [F * K])   [take reciprocals] 
 
Note that, as R5 gets bigger, F will increase; F also increases as the sample size increases.  
Hence, the value of F is dependent on both the strength of association and on the sample size.  
Conversely, changes in sample size have no necessary effect on R5.   
 
These alternative formulas can be very useful, since it is not unusual for either F or R5 to not be 
reported, while the other necessary information is. 
 
In the present case, 
 

.845 = 
109.4
92.4 = 

2)*  (46.20 + 17
2*  46.20 = 

K)*  (F + 1) - K - (N
K*  F = R

 

46.34, = 
2*  .155

17*  .845 = 
K*  )R - (1

1) - K - (N*  R = F

2

2

2

 

 
m. Compute Adjusted R2. 
 
R2 is biased upward, particularly in small samples.  Therefore, adjusted R2 is sometimes used.  
The formula is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−−

−=
)1(

)1)(1(1R Adjusted
2

2

KN
RN  

Note that, unlike regular R2, Adjusted R2 can actually get smaller as additional variables are 
added to the model.  As N gets bigger, the difference between R2 and Adjusted R2 gets smaller 
and smaller. 

 

827.
)1220(

)845.1)(120(1
)1(

)1)(1(1R Adjusted
2

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−−

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−−

−=
KN

RN  
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