
 Estimation; Sampling; The T distribution 
 
I. Estimation 

A. In most statistical studies, the population parameters are unknown and must be 
estimated.  Therefore, developing methods for estimating as accurately as possible the values of 
population parameters is an important part of statistical analysis. 
 

B. Estimators = random variables used to estimate population parameters 
 

C. Estimates = specific values of the population parameters 
 

1. Estimates need not have a single value; instead, the estimate could be a 
range of values 

 
2. Point estimate = estimate that specifies a single value of the population 
 
3. Interval estimate = estimate that specifies a range of values 

 
D. Properties of a good estimator.  Let θ  (this is the Greek letter theta) = a 

population parameter.  Let  = a sample estimate of that parameter.  Desirable properties of  
are: 

θ̂ θ̂

1. Unbiased: Expected value = the true value of the parameter, that is, E( ) 
= 

θ̂
θ .  For example, E( X ) = µ, E(s5) = σ5. 

 
2. Efficiency:  The most efficient estimator among a group of unbiased 

estimators is the one with the smallest variance.  For example, both the 
sample mean and the sample median are unbiased estimators of the mean 
of a normally distributed variable.  However, X has the smallest variance. 

 
3. Sufficiency:  An estimator is said to be sufficient if it uses all the 

information about the population parameter that the sample can provide.  
The sample median is not sufficient, because it only uses information 
about the ranking of observations.  The sample mean is sufficient. 

 
4. Consistency.  An estimator is said to be consistent if it yields estimates 

that converge in probability to the population parameter being estimated 
as N becomes larger.  That is, as N tends to infinity, E( ) = θ̂ θ , V( ) = 0. 
 For example, as N tends to infinity, V(

θ̂
X ) = σ5/N = 0. 

 
II. Sampling 

A. Usually, we do not have data on the entire population.  Hence, we must rely on 
observing a subset (or sample) of the population.  Population parameters are estimated using the 
sample. 
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B. The sample may not necessarily represent the population though. 
 

1. Nonsampling errors - Can study the wrong population.  For example, we 
might exclude those without phones; or, we might rely on self-selection into the sample.  For 
now, we will assume nonsampling errors are not present.   

 
2. Sampling errors - chance alone can cause the sample estimates to differ 

from the population parameters. 
 

C. There are many different types of sampling schemes.  Different types of samples, 
and the kinds of issues you have to be concerned with when drawing a sample, are discussed in 
much greater detail in the Research Methods class.  For now, we will primarily concern 
ourselves with a specific type of sampling scheme, simple random sampling.  With simple 
random sampling, each item in the population has an equal and identical chance of being 
included in the sample. 
 
III. Sample statistics. 

A. Suppose we are planning to take a sample of N independent observations in order 
to determine the characteristics of some random variable X.  Then, X1, X2,..., XN represent the 
observations in this sample.  The probability distribution of X1 through XN is identical to the 
distribution of the population random variable X.  We want to use the sample values of X1 - XN 
to determine the characteristics of X.  Sample statistics are used as estimates of population 
parameters.  The population mean and variance are among the parameters we want to estimate 
using a sample. 
 

B. The sample mean is defined as: 
 

µ̂ = XN
1 = X i∑  

 
C. The sample variance is 
 

σ̂ 222
i

2
i

2  = )XN - X( 
1 - N

1 = )X - X( 
1 - N

1 = s ∑∑  

 
D. Comments on formulas and notation. 

1. Notation used differs greatly from source to source and author to author.  
It is therefore good to become comfortable with a variety of notations 

 
2. Note the use of the ^ in the notation for both the sample mean and 

variance.  It is very common to use a ^ over a population parameter to represent the 
corresponding sample estimate. 

 
3. In the sample variance, note that the denominator uses N - 1 rather than N. 

 It can be shown that using N - 1 rather than N produces an unbiased estimate of the sample 
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variance; that is, E(s5) = σ5.  Of course, when N is large, it doesn't make much difference 
whether you use N or N - 1.  
 
IV. Sampling distributions. 

A. Note that different samples could yield different values for X .  For example, if I 
took a random sample of 5 exam scores, I might get a mean of 94; if I took a different random 
sample of 5 cases, I might get a mean of 92; and so on.  That is, X is itself a random variable, 
which has its own mean and variance.   

If we take all possible samples of size N and determine  for each sample, the resulting 
distribution is the probability distribution for X .  The probability distribution of X  is called a 
sampling distribution.   
 

B. What is the mean and variance of the sampling distribution for X ?  That is, what 
is the mean and variance of X ? 

 
1. Mean of X : 
 

µµµµµµµ xXXXX
N21  =  =  = N*  

N
1 = ) + ... + + (

N
1 = 

N
X + ... + X + X  E = )XE( ⎟

⎠
⎞

⎜
⎝
⎛  

 
2. Variance of X : 
 

σσσσσσ 2
x

2
X

2

2
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X
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X
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3. Standard deviation of X : 
 

  = 
N

 = 
N

 = )XSD( X

2
XX σσσ  

 
The standard deviation of X  is referred to as the true standard error of the mean. 

 
C. Question:  We know the mean and variance of X  - but what is the shape? 

1. If X- N(µ, σ5), then 
 

1) N(0,  

N

 - X = 

N

 - X = Z

 

and ,
N

 , N  X
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2. What if X is not distributed normally?  According to the Central Limit 

Theorem - regardless of the shape of the parent population (as long as it has a finite mean µ and 
variance σ5) the distribution of X  will approach N(µ, σ5/N) as the sample size N approaches 
infinity.  That is, as N ---> 4, X  - N(µ, σ5/N). 

In practice, 30 is usually a pretty good approximation of infinity! 
 
Example: How X  comes to be normally distributed as N gets larger and larger. As 
stated above, according to the Central Limit Theorem - regardless of the shape of the parent 
population (as long as it has a finite mean µ and variance σ5) the distribution of X  will approach 
N(µ, σ5/N) as the sample size N approaches infinity.  That is, as N ---> 4, X  - N(µ, σ5/N).  We 
will now give an example of this, showing how the sampling distribution of X  for the number of 
pips showing on a die changes as N changes from 1, 2, 3, 10, and 1000.  Note how, as N gets 
bigger and bigger, the distribution of X  gets more and more normal-like.  Also, the true SE of 
the mean gets smaller and smaller, causing X to vary less and less from the true mean of 3.5. 
 
N = 1.  When N = 1, X  and X have the same distribution.  This distribution is clearly NOT 
normal.  Rather, it has a Uniform distribution – each possible value is equally likely.  For 
example, you are just as likely to get a 1 as you are a 4, even though 4 is much closer to the mean 
(3.5) than 1 is.  By way of contrast, with a normally distributed variable, values close to the 
mean are more likely than values farther away from the mean. 

Statistics
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N = 2.  Notice how you are already getting big changes – a mean of 1 is now much less likely 
than a mean of 3.5 or 4.  The distribution is not quite normal yet, but it certainly is not uniform 
anymore.  As you see from the percentiles, the middle two-thirds of the distribution runs from 
2.083 to 4.917, i.e. if we repeatedly drew samples of size 2, 2/3 of the times the sample mean 
would be between 2.083 and 4.917 (which in practice is 2.5 to 4.5 inclusive). 
 

Statistics

XBAR
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N = 3.  The distribution continues to get more and more normal like, and values further from the 
mean continue to get less and less likely.  The middle 2/3 now covers a smaller range, 2.67 
through 4.33. 
 

Statistics

XBAR
216

0
3.500

.986
2.667
3.000
3.500
4.000
4.333

Valid
Missing

N

Mean
True SE

16.667
33.333
50
66.667
83.333

Percentiles
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N = 10.  This is very close to being a normal distribution.  When N = 1, there is a 1/6th chance 
that the sample mean would be 1; when N =10, there is less than 1 chance in 60 million of 
getting a sample mean that small. Now the middle two-thirds runs from 3 to 4.  If you rolled a 
die 10 times, there is only a very small chance (about 0.3%) that you would get a mean of less 
than 2 or greater than 5. 

Statistics
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N = 1000.  I cannot generate enough data to illustrate this!  (When N = 10, there are already 
more than 60 million possible combinations.) But if I could, the mean would be 3.5, and the true 
standard error would be .054.  The middle 2/3 would run from about 3.446 to 3.554.  If we took 
the average of 1000 dice rolls, there is only about a 0.3% chance that the average would not be 
between 3.34 and 3.66. 
 
 
 
V. The T distribution 

1. Note that, in order to do a Z-score transformation,  σ must be known.  In reality, 
such a situation would be extremely rare.  Much more common is the situation where both µ and 
σ are unknown.  What happens if we do not want to (or cannot) assume a value for σ (i.e. σ is 
unknown)?  When σ is unknown, we substitute the sample variance s; and instead of doing a Z 
transformation which produces a N(0,1) variable, we do a T transformation which produces a 
variable with a T distribution.   

That is, when σ is unknown, 
 

T  

N
s
 - X   ;

N
s

 - X = 

N
s
 - X = T 1-N2

~µµµ  

 
Unfortunately, when s is substituted for σ, T is not normally distributed, nor is its 

variance 1.  Since s is itself a random variable, there is more uncertainty about the true value of 
X_, hence the variance of T is greater than 1. 
 

NOTE:  You want to be sure to distinguish between the following: 
 

mean the of error  standardEstimated =  est = 
N
s

 

 mean, the of error  standardTrue = 
N

Mσ

σ

 

 
2. Characteristics of the T distribution: 
 

T Shape is determined by one parameter, v = N - 1 = degrees of freedom.  Why N 
- 1?  If you know s, and the value of N - 1 observations, you can determine the value of the Nth 
observation.  Hence, only N - 1 observations are free to vary. 

 
T E(T) = 0. 
 
T The T distribution is symmetric. 
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T As N tends to infinity, T - N(0, 1).  120 is a pretty good approximation of 
infinity, and even 30 isn't too bad.  (Note: this is fairly logical, since the bigger the sample size, 
the closer s approximates σ). 

 
T The following diagram (from Harnett) shows how a variable with a T 

distribution and 3 degrees of freedom compares to a variable with a standardized normal 
distribution.  Note that values are much more spread out in the T-distributed variable, i.e. the 
tails are fatter.  As V increases, the T distribution becomes more and more like a standardized 
normal distribution; after v = 120, there is very little difference, and even after v=30 there is not 
much difference. 
 
 

  
 
 

3. The T transformation is appropriate whenever the parent population is normally 
distributed and σ is unknown.  Even if the parent population is not normally distributed, T will 
often work ok. 
 

4. Tables for the T distribution.  T is a little bit harder to work with than Z, because 
P(a # T # b) depends upon the degrees of freedom.  For example, for v = 120, 
P(-1.98 # T # 1.98) = .95, but when v = 10, P(-2.228 # T # 2.228) = .95.  Ergo, tables for the T 
distribution typically list critical values for T at specific levels of significance (i.e. α = .01, α = 
.05) for different values of v. 
 
See Appendix E, Table III, (or Hays p. 932) for tables for the T distribution. 
 
In Table III, the first column gives values for v.  The first row lists significance values for what 
Hayes labels as Q and 2Q.  If you want to do a 1-tailed test, look at the line labeled Q; for a 2-
tailed test, use the line labeled 2Q.  Q = P(Tv $ t) = P(Tv # -t), and 2Q = 1 - P(-t # Tv # t).   
 

T For example, suppose N = 11 (i.e. v = 10) and we want to find t for P(T10 $ t) = .05; 
looking at the row labeled v = 10 and the column labeled Q = 0.05, we see that the critical value 
is 1.812.  (Note that this is larger than the z value of 1.65 that we use when σ is known).  Note 
that this also means that F(1.812) = .95.   
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T Conversely, if we wanted to find t for P(T10 # t) = .05, the appropriate value would be 

-1.812 (meaning F(-1.812) = .05.   
 
T Or, suppose v = 15, α = .01, and we want P(-a # T # a) = .99.  We look at the row for v 

= 15 and the column for 2Q = 0.01, and we see that a = 2.947, i.e. P(-2.947 # T15 # 2.947) = .99. 
 (By way of contrast, when σ is known, the interval is -2.58 to 2.58). 
 

Other than always having to look up values in the table, working with the T distribution 
is pretty much the same as working with the N(0, 1) distribution. 
 
EXAMPLES: 
1. Find the values of t for the T distribution which satisfy each of the following conditions: 

(a) the area between -t and t is 0.90 and v = 25 
(b) the area to the left of t is 0.025 and v = 20 

 
Solution. 

(a) P(-t # T25 # t) = .90 ==> 2Q = .10.  Looking at Table III, appendix E, v = 25, 2Q 
= .10, we see that t = 1.708. 
 

(b) P(T20 # t) = .025 = P(T20 $ -t) ==> t = -2.086.  (Look at Q = .025, v = 20.)  
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