
 Probability 
 

 
Probability 

 
a number between 0 and 1 that indicates how likely it is that a specific 
event or set of events will occur. 

 
Simple 
experiment 

 
some well-defined act or process that leads to a single well-defined 
outcome.  For example, a coin toss will yield either a heads or a tails; a 
birth will yield either a boy or a girl. (NOTE: Statisticians do NOT use 
the term “Experiment” in the same way a Social psychologist or a 
chemist would). 

 
Sample space 

 
the set of all possible distinct outcomes of an experiment.  For 
example, if you toss a coin once, the possible outcomes are H or T; toss 
it twice, and the possible outcomes are HH, HT, TH, and TT. 

 
Sample point, 
or elementary 
event 

 
any member of the sample space.  One possible result of a single trial 
of the experiment. e.g., getting a Heads when tossing a coin; getting the 
Ace of Hearts when pulling a card from a deck. 

 
Event, or event 
class 

 
some subset of the outcomes of an experiment; any set of elementary 
events. e.g. getting a “heart” when you pull a card from a deck is 
achieved by 13 different elementary events. 

 
Mutually 
exclusive 
outcomes 

 
Any set of events that cannot occur simultaneously.  For example, for 
the variable GENDER, a person cannot be both male and female.  
Conversely, for ETHNICITY, an individual could claim both European 
and Asian ethnic heritages. 

 
Independent 
events 

 
events that have nothing to do with each other; the occurrence of one 
event in no way affects the occurrence of the other.  For example, the 
result of one coin toss does not affect the possible value of the next. 

 
NOTE:  Mutually exclusive and independent are not one and the same!!!  If someone is Male, 
we know they are not female; male and female are mutually exclusive events.  But, if one coin 
toss comes up heads, we know nothing about the value of the next coin toss. 
 
PROBABILITY AXIOMS: 
 
1. 0 ≤ P(Ei) ≤ 1,  where Ei = Event i (NOTE: A is often used instead of Ei). 
2. P(S) = 1,  where S = the Sample Space 
3. When all sample points are equally likely, 
 

events possible of number Total
E in events elementary of Number = )EP( i

i  
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For example, if E1 = getting a 1 when you roll a fair die, P(E1) = 1/6; if E1 = getting an even 
number when you roll a fair die, P(E1) = 3/6. 
 
4. Total number of sample points = n1 * n2 * n3 * ... * nk, where 
ni = number of possible outcomes for the ith variable.  All outcomes need not be equally likely.  
Hence, if you toss a coin three times, there are 8 possible outcomes. 
 
Summary of probability rules:  Let A and B be two events of interest in a particular experiment. 
(The rules will make more sense once you see the examples.) 
 

 
Rule Name/ 
Explanation 

 
General Rule 

 
Rule for mutually 
exclusive events 

 
Rule for 
independence 

 
Complements - Prob that 
A does not occur 

 
P(A) - 1 = )AP(  

 

 
 

 
 

 
Conditional probability - 
Prob that A occurs given 
that B has or will occur 
[“Probability of A given 
B”] 

 

P(B)
B)  P(A
=B)| P(A

∩  

 

 
0 = B) | P(A  

 

 
P(A) = B) | P(A  

 

 
Joint Probability - Prob 
that both A & B occur in 
one replication of the 
experiment; the prob of 
the intersection of A & B 
[“Probability of A and 
B”] 

 

A) | P(A)P(B
 = B) | P(B)P(A

 = B)  P(A∩
 

 

 
0 = B)  P(A∩  

 

 

P(A)P(B)
= B)  P(A∩

 

 

 
Additive probability, aka 
Probability of a union - 
Prob that either A or B or 
both occur in one 
replication of the 
experiment [“Probability 
of A or B”] 

 

B)  P(A   
- P(B) + P(A)

= B)  P(A

∩

∪
 

 

 

P(B) + P(A)
= B)  P(A∪

 

 

 

P(A)P(B)   
- P(B) + P(A)

= B)  P(A∪
 

 

 
Marginal probability 

 

)E | )P(AEP( 
= )E  P(A 

= P(A)

ii

i

∑
∩∑  

 

 
 

 
 

 
Bayes' Rule (Another 
formula for conditional 
probability) 

 

)E | )P(AEP( 
)E | )P(AEP(

= A) | EP(

jj
j

ii

i

∑
 

 
 

 
 

 
 Probability - Page 2 



 Probability – Intuitive/Substantive Examples 
 
The above formulas are actually pretty easy; it is knowing when to use them that is the trick.  It 
is especially easy to mix up conditional probability, joint probability, and additive probability.  
Here are some examples that might give you an intuitive feel for the different types of 
probabilities.  (Any numbers I give are just made up; also, drawings are not to scale.) 
 
1. 5% of the population dies from heart attacks every year.  1% of all those aged 20-25 die 
from heart attacks every year.  10% of those aged 80 and above die from heart attacks every 
year. 
 

 

A E1 

E2 

 
 
The first statement gives the marginal probability of dying from a heart attack, i.e. if A = dying 
from heart attack, then P(A) = .05.  Everything not within A represents people who do not die or 
who die from other causes. However, as the next two statements show, the probability of dying 
from a heart attack varies by age; that is, these statements give the conditional probability of 
your dying from a heart attack given your age.  Hence, if E1 = aged 20-25 and E2 = aged 80 and 
above, then P(A | E1) = .01 and P(A | E2) = .10.  Also, E1 and E2 are mutually exclusive events; 
you can’t be both ages 20-25 and 80+. 
 
The areas where the circles overlap reflect their joint probabilities, e.g. the probability of dying 
from a heart attack and being age 80+, or P(A  ∩ E2).  If these were drawn perfectly, 1% of E1 
would overlap with A and 10% of E2 would overlap with A. 
 
NOTE:  If I know nothing about a person and I am asked to predict the probability of their dying 
in the next year from a heart attack, my best guess is 5%.  But, if I know their age, a likely better 
guess is given by the conditional probability of death given age.  That is what much of statistics 
is about: using information about people to better explain or better predict what happens to them. 
 

 
 Probability - Page 3 



2. 5% of the population dies from heart attacks every year, 5% dies from cancer, and 5% 
dies from other causes. 
 

 

A 
B 

C 

 
 
Again, you are given marginal probabilities.  These happen to be mutually exclusive events, so 
add them all up and you get P(Dying in a year) = 15%.  Everything not contained in the three 
circles reflects the 85% of the population that does not die. 
 
3. Of those who voted in a recent election, 50% were white females, 35% were white males, 
9% were black females, and 6% were black males. 
 

 

White 
Females 

White 
Males 

Black Females 

Black Males  
 
Here, you are given several joint probabilities, e.g. the probability of being both white and 
female = P(white ∩ female) = .50.  From the information given, you could easily determine the 
marginal probabilities for race and gender, e.g.  P(White) = P(White ∩ Female) + P(White ∩ 
Male) = .85.  Similarly, P(Black) = .15, P(Female) = .59, P(Male) = .41. 
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4. At a boys school, 10% of the students were on the football team and 8% were on the 
track team.  Half of the boys who played football were also on the track team.  Altogether, 13% 
of the boys were on at least one of the two teams, i.e. they were on the football team or the track 
team or both. 
 

 

A B 

 
 

You have two marginal probabilities here: P(Football) = .10 and P(Track) = .08.  There is one 
conditional probability: P(Track Team | Football team) = .50.  And, there is one additive 
probability: P(Football ∪ Track) = .13.   
 
Why isn’t this last number .18?  Because track and football are not mutually exclusive events; 
some boys were in both sports, as is shown by the overlap in the two circles.  Since 10% of the 
boys are in football and half of those are also in track, the probability of being on both the track 
and football teams is .05, i.e. P(Football ∩ Track) = P(Football) * P(Track Team | Football team) 
= .10 * .50 = .05.  Hence, to find the probability of being on football or track, you take 
P(Football) + P(Track) – P(Football ∩ Track) = .10 + .08 - .05 = .13. 
 
 Probability – Math Examples 
 
1. In a family of 11 children, what is the probability that there will be more boys than girls? 
 
SOLUTION.  The easiest way to solve this is via the complements rule.  Let event A = Having 
more boys than girls.  A  is therefore more girls than boys.  Each of these events are equally 
likely, so P(A) = .50. 

Note that the problem would be a little more difficult if there were 10 children, since you 
would then have to figure out the probability that there were an equal number of boys and girls.  
We’ll see later how to do that. 
 
2. You are playing Let's Make a Deal with Monte Hall.  You are offered your choice of 
door #1, door #2, or door #3.  Monte tells you that goats are behind two of the doors; but, behind 
the other door is a new car.  You choose door #1.  Monte, who knows what is behind each door, 
then opens door #3, revealing a goat.  He then offers you the choice of either keeping your own 
door, #1, or else switching to Monte's remaining door, #2.  Should you switch? 
 
SOLUTION. The easiest way to see this is by using the complements rule.  Let A = switch, A  
= doesn't switch.  Note that resolving not to switch is the same as not having the option to 

 
 Probability - Page 5 



switch.  When you first pick, you have a 1/3 chance of winning; ergo, if you don't switch, your 
probability of winning stays at 1/3.  Hence, you have a 2/3 chance of winning if you switch and 
only 1/3 if you don't switch.  So, switch. 

Hardly anybody believes this simple proof though, at least not right away!  Indeed, this 
question embroiled the country in controversy in 1991.  Marilyn vos Savant, allegedly the 
world's smartest person, received 1000s of letters when she addressed this question in her Parade 
Magazine column.  More recently, the problem was included in the best-selling book, The 
Curious Incident of the Dog in the Night-Time, about an autistic child who tries to solve the 
murder mystery of the neighbor’s dog. For further discussion of this burning issue, see the 
Appendix on The Monty Hall Controversy. 
 
3.  A survey shows that 44% of a magazine’s readers are Protestants, 55% are Democrats, and 
30% are Protestant Democrats.  That is, if event A = Protestant, and event B = Democrat, then 
P(A) = .44, P(B) = .55, P(A ∩ B) = .30. Answer the following: 
 
a.  What proportion of Democrats are Protestants?   
 
SOLUTION.   This is a question about conditional probability.  Given that a reader is a 
Democrat, what is the probability that s/he is also a Protestant?  This diagram may help you to 
visualize it a bit better. 
 

 

A B 

 
 
44% of the sample space falls within A, 55% falls within B, and 30% falls in the intersection of 
A and B.  Formulaically, the solution is 

 
 

.55 = 
.55
.30 = 

P(B)
B)  P(A = B) | P(A ∩  

 
Put into words, a little over half (55%) of the magazines readers are Democrats, and of 

those a little over half (55%) are also Protestants.   
 

b. What proportion of Protestants are Democrats?   
 
SOLUTION.   Again, conditional probability. Of those readers that are Protestant, what 
percentage are also Democrats?
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.68 = 
.44
.30 = 

P(A)
A)  P(B = A) | P(B ∩  

 
A little less than half (44%) of the readers are Protestant, and of those more than 2/3 

(68%) are Democrats.  That is, if a reader is Protestant, there is better than a 2:1 chance they are 
also Democrat. 
 
c.  What proportion of the population is either Democrat or Protestant, or both?  
 
SOLUTION.  This is a question about the probability of a union.  Note that 

 
 

.69 = .30 - .55 + .44 = B)  P(A - P(B) + P(A)= B)  P(A ∩∪  
 

Note that we can’t just add up the % Protestant and the % Democrat, because then the Protestant 
Democrats would get counted twice (once as Protestants and then again as Democrats). 
 

 
4.  Prove that Race and Gender are independent in the following table: 
 

 
Race \ Gender 

 
Male 

 
Female 

 
Total 

 
White 

 
35 

 
35 

 
70 

 
Nonwhite 

 
15 

 
15 

 
30 

 
Total 

 
50 

 
50 

 
100

 
SOLUTION.  A = White, B = Male, P(A) = .70, P(B) = .50, P(A ∩ B) = .35.  A and B are 
independent because 
 

P(B) = .50 = 
.70
.35 = 

P(A)
A)  P(B = A) | P(B

P(A), = .70 = 
.50
.35 = 

P(B)
B)  P(A = B) | P(A

∩

∩

 

 
5. A new, less expensive method has been developed for testing for the AIDS virus.  Fifty 
percent of the people who test positive actually have AIDS.  Of those who test negative, 5% 
have AIDS.  Twenty percent of the population tests positive. 

a. What percentage of the population will receive false positive scores - that is, the 
test will say they have AIDS when they really don't? [i.e. what % will be unnecessarily scared?] 
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b. What percentage of the population will receive false negative scores - that is, the 
test will say they don't have AIDS when they really do? [i.e. what % will have a false sense of 
security]    

c. What percentage of the population has AIDS?  (Don't worry, these are fictitious 
numbers.) 

d. What is the probability that someone who has AIDS will test positive? 
 
SOLUTION.  Let us use the following terms: 
 

A = has Aids, A  = does not have AIDS 
E1 = positive test,  E2 = negative test 

 
We are told: 
 
P(E1) = P(Positive test) = .20, implying  
P(E2) = P(Negative test) = .80 
 
P(A | E1) = P(having Aids if you test positive) = .50, implying 
P( A | E1) = P(not having Aids if you test positive) = .50 
 
P(A | E2) = P(having aids if you test negative) = .05, implying 
P( A | E2) = P(not having aids if you test negative) = .95. 
 
a. We are asked to find what percentage of the population does not have AIDS and 

receives a positive score, that is, P(E1 ∩ A ).  Use joint probability. 
 

.10 = .50*  .20 = )E | A)P(EP( = )E  AP( 111∩  
 

That is, half of the 20% of the population that tests positive will needlessly worry that they have 
AIDS. 
 

b. We are asked to find what percentage of the population has AIDS and receives a 
negative score, that is, P(A ∩ E2).  Again use joint probability. 

 
.04 = .05*  .80 = )E | )P(AEP( = )E  P(A 222∩  

 
That is, 5% of the 80% who test negative, or 4% altogether, will have AIDS but still test 
negative. 
 

c. We are asked to find P(A), i.e. the probability of having AIDS.  Use the marginal 
probability theorem: 

 
.14 = .05)*  (.80 + .50)*  (.20 = )E | )P(AEP( = P(A) ii∑  
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That is, 14% of the population has AIDS. 
 

d. We are asked to find P(E1 | A), i.e. what percentage of the people who have AIDS 
will be identified by this test?  Use Bayes theorem. 

 

.714 = 
.14
.10 = 

.05)*  (.80 + .50)*  (.20
.50*  .20 = 

)E | )P(AEP( 
)E | )P(AEP( = A) | EP(

jj
j

11
1 ∑

 

 
So, this test will identify a little over 71% of those who have AIDS. 
 
ALTERNATIVE APPROACH.  If you find a problem like this confusing, you might try 
drawing a diagram and see if that helps.  So, begin by noting that 20% test positive (which also 
means that 80% test negative): 
 

 
Positive 
Test 

Negative 
Test 

 
 

Further, we are told that half of those who test positive have AIDS – so divide the left-hand 
portion into two equal parts: 
 

 
Positive 
Test, No 
Aids 

Positive 
Test, Has
Aids 

Negative 
Test 

 
 
 

Now, the right-hand side consists of those who tested negative.  We are told that 5% of those 
who tested negative actually have AIDS, which means that the other 95% of that group does not 
have AIDS.  So, the diagram looks roughly like this: 
 

 
Positive 
Test, No 
Aids 

Positive 
Test, Has 
Aids 

Negative 
Test, Has
Aids 

Negative 
Test, No 
Aids 

 
 
Each of the four boxes represents a joint probability.  It should be fairly easy to figure out the 
probability of each of those combinations and to then solve the original problems from there. 
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6. A researcher is doing a study of gender discrimination in the American labor force.  She 
has come up with a 3-part classification of occupations (Occupation 1, Occupation 2, and 
Occupation 3) and a 2-part classification for wages (“good” and “bad”).  She finds that, by 
gender, the distribution of occupation and wages is as follows: 
 

 
 

 
Women 

 
Men 

 
Pay/Occ 

 
Occ 1 

 
Occ 2 

 
Occ 3 

 
Occ 1 

 
Occ 2 

 
Occ 3 

 
Good Pay 

 
20% 

 
7% 

 
10% 

 
7% 

 
10% 

 
60% 

 
Bad Pay 

 
50% 

 
8% 

 
5% 

 
8% 

 
5% 

 
10%

 
From the table, it is immediately apparent that 37% of all women receive good pay, compared to 
77% of the men.  At the same time, it is also very clear that the types of occupations are very 
different for men and women.  For women, 70% are in occupation 1, which pays poorly, while 
70% of men are in occupation 3, which pays very well.  Therefore, the researcher wants to know 
whether differences in the types of occupations held by men and women account for the wage 
differential between them.  How can she address this question? 
 
SOLUTION.  This problem is best addressed by asking a “what if” sort of question:  Suppose 
women were distributed across occupations the same way men were, but within each occupation 
had the same wage structure that they do now.  If differences in types of occupations alone 
account for the wage discrepancies, then this approach should control for those differences and 
wage differentials should disappear. 
 

We will use the following terms: 
 
Event A = Receives Good pay, A = Bad pay, Ei = Employed in occupation i. 
 

Given these definitions, this problem requires that we combine the occupational distribution for 
men (P(Ei))M with the conditional probabilities that a woman receives good wages given the 
occupation she is in (P(A | Ei))F

 
For men P(E1)M = .15, P(E2)M = .15, P(E3)M = .70 
 
For women P(A | E1)W = 2/7, P(A | E2)W = 7/15, P(A | E3)W = 10/15 

 
Using the marginal probability theorem, we get 
 

.58 = )*  (.70 + )*  (.15 + )*  (.15 = )E | P(A)EP( = P(A) 15
10

15
7

7
2W

i
M

i∑  
 
Hence, if women had the same occupational distribution while continuing to make the same 
salaries within occupations that they do now, 58% of women would make good wages.  This is 
much more than the 37% of women who currently make good wages, but still well short of the 
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male figure of 77%.  Differences in occupational structure account for much of the difference 
between men and women, but not all. 
 
NOTE:  This sort of “what if” question comes up all the time.  For example, in demography it is 
often difficult to compare death rates across populations, because one population might be 
relatively old (and hence has a lot of people at high risk of dying) while another is relatively 
young.  Therefore, a common approach is to standardize using the age composition of one 
population and the age-specific death rates of the other.  For example, Mexico and the United 
States have very similar crude death rates, i.e. about the same proportion of people die in both 
countries each year.  This is highly deceptive because high fertility in recent years has caused 
Mexico's population to be much younger than is the United States'. 
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