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Abstract - In th is  p a p e r  w e  provide  a state space  
approach  for cons t ruc t ing  convoIutiona1 codes  of rate 
1/72 a n d  complexi ty  6, whose  f ree  d is tance  is n(6 + l), 
the max ima l  possible f ree  dis tance.  

I. IXTRODUCTION 

In contrast to  the situation of block codes there are few 
algebraic constructions for convolutional codes whose free dis- 
tance has a designed value. The constructions which do exist 
often depend on construction techniques for quasi-cyclic codes 
and we refer to [2, 71 where also more references are provided. 

One such construction was provided by Justesen in [l] 
n-here a convolutional code of rate l / n  and complexity 6 is 
given whose free distance is n(6 + l),  the maximal possible 
distance of all codes with these parameters. Since the de- 
signed distance is maximal vie call such a code a maximal 
distance separable (LIDS) convolutional code. 

hlore recently the authors of this paper in collaboration 
with E. York [4, 5, 6, 71 gave for arbitrary rates k / n  construc- 
tions of convolutional codes with a designed free distance. The 
techniques employed in these papers were new and they heav- 
ily relied on algebraic representations of linear systems. The 
achieved distances in [4, 6 ,  71 were approsimately $ times 
the best possible free distance found among all convolutional 
codes of rate k / n  and complexity 6. In particular for high 
rates the results were near optimal. 

The authors of this paper showed in [5] that the construc- 
tions can be refined in order to  achieve better distances also 
for low rate codes. In this paper we further refine the tech- 
nique and we show how to rederive the result of Justesen [l] 
for rate 1/n codes. 

We want to  emphasize that  the construction we present 
here is not just a reproof of a result already obtained. Indeed 
one can show that  subfield constructions can be carried out 
and in this way codes can be constructed over an arbitrary 
base field. In addition it is our belief that the construction 
carries over to arbitrary rates as well. Finally we would like 
to  mention that the presented codes are very suitable for the 
decoding algorithm presented by the second author in 131. 

11. RATE I/" CONVOLUTIONAL C O D E S  

Let F denote an arbitrary finite field with q elements and 
let C be a convolutional code over IF of rate l / n .  As it was 
shown in [4, 7) we can describe C through a familiar looking 
input/state/output description. Thus let: 

21(2)=2'OZ7+211Zf--I+ ...+f211; ut E I F n , t = O ,  . . . ,  y. 

If one partitions the vector ut into ut = (::) , where yt has 
71 - 1 components and ut has 1 components then the convo- 
lutional code is equivalently described by the familiar looking 
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' (A ,  B ,  C, D)' representation 

~ t + i  - 4 ~ t  + But 
yt = Czt +Dut ,  20 = 0 ,  2 , + 1  = 0. 

Here (A, B ,  C, D )  are matrices of size 6 x 6, S x k ,  ( n - k )  x 6 and 
( n - k )  x k  respectively. We say that (A, B )  forms a controllable 
matrix pair if rank (B A B . .  . ASW1 B )  = 6, and that (A ,  C) 
forms an observable p a w  if (At, C') is a controllable pair. 

Once (A ,  B )  forms a controllable pair and (A ,  C) forms an 
observable pair then it was shown in [4, 6, 71 that (1) forms a 
noncatastrophic convolutional code of complexity b and rate 
k / n .  Assume now that  k = 1. By taking 

where cy is a primitive element of the field F, and by choosing 
C, D such that the pair (A, C) is observable it was shown in [4] 
that we obtain a code having distance more than (6 + l), as 
long as we alloiv large enough fields. In this paper we will 
explain how a MDS convolutional code can be obtained by 
choosing special matrices C, D. For this let A, B be defined 
as above and let 

D : =  ( : ) .  
For the better understanding of the construction we will 
present the case n = 2 first. In the end we will outline the 
cases n > 2. Let IF = IFq with q - 1 2 36, A and B as above, 
D = (l), and Iet 

f 0 . . .  0 ) 

The system (1) can Le rewritten as 

( 3 )  

In (3) the input ut interchanged its meaning with the out- 
put yt. We want to transform (3) into an  equivalent system, 
having the form zt+l = A ' z ~  -t B'yt, ut = C ' Z ~  + y t ,  with A' 
defined as above. This is possible if there exists an invertible 
matrix S such that  

S (A - BC)S-' = A' 

xt+l = (A-BC)x t  + Byt 
ut = - C X ~  + Dyt. 

or else if det(s1-(A-BC)) = det(s1-A') = ~ ~ = 1 ( ~ - ~ 6 + L  ). 
In order to  achieve this we will have to  solve a linear equation 
resulting in a matrix C := ( c1 

det(s1-  (A - BC))  = det(s1-  A'). 

c2 . . . cs ) such that 

0-7803-4408-1/98/$10.00 0 1 9 9 8  IEEE 116 

mailto:Smarandache.l@nd.edu
mailto:Rosenthal.l@nd.edu
http://wv.u?v.nd.edu/-rosen


In particular there exists an invertible matrix S such that  
S(A - l3C)S-l = A‘. Now ( 3 )  is equivalent with: 

(4) 
zt+i = A’zt + SByt 

U t  = -cs-’zt + yt. 

Let B’ := S B  and C‘ := CS-’. I t  can be proved that  (A‘,  B’) 
forms a controllable pair and that  (A’,C’) forms an  observ- 
able pair. I t  remains to  be shown that  the obtained code has 
distance 2(6 + 1). First we remind that  if 

u ( s )  = uos7 + u1sy--I + .  . . + U T )  

y(s) = yos’ + yls’-’ + .  . . + y7, 

where y is the degree of U ,  the first equations of the systems (1) 
and (4) give that  (see [4, 71): 

(U-, ,  ..., ~ 0 ) ~  E ker ( B  A B . .  . A’B) 

(y7,-. . , yo)t E ker (B’ A’B’ . . . A”B’) . 
and 

X‘e suppose uo # 0 hence yo # 0. We look a t  the degree y 
of a codeword U. In  case y < y - 1 then 

( B  AB . . .  A’B) 
and 

(B‘ A’B’ . . . A”B‘) 
are full rank Vandermonde matrices (multiplied eventually by 
some nonsingular diagonal matrices), therefore (U’, . . . , ~ 0 ) ~  

and (y-,, . . . ,yo)‘ both have weight greater than 6 + 1. Hence 
(U,, ..., U O ) ~  has weight more than 2(6 + 1). If y 2 y - 1, 
Aq-’ = I so 

(U’,. . . , U O ) ~  E ker ( B  A B . .  . A’B) 
implies that  

\ Uq-2 + U2q-3 +.  . . 1 
that  has rank 6. The case U’ # 0 gives (as in the first case) 
that  the weight of U‘ 2 6 + 1 hence the weight of U will be 
2 6 + 1 as well. Also defining y’ in the same way, we have 
that  the weight of y‘ 2 6 + 1 unless y‘ = 0, therefore again 
mt(v) 2 2(6+1). If U‘ = 0 and y‘ # 0, from the first equations 
of the systems (1) and (4) we have 

z1 +zq  + ... = A(zo +z,-1+ ...) 

(5) 
~ ~ - 2 + ~ 2 ~ - 3 + . . .  = A q - 2 ( ~ t + ~ q - 1 + . . . ) .  

That  gives 

. I  

Since [ f ) is a Vandermonde matrix multiplied by a 

nonsingular diagonal matrix we get the estimate 
CA@ 

/ c \  

SO wt(U) = wt ( E )  = wt(y) + wt(U) 2 26 + 2 = 2(6 + 1). The 
case U‘ # 0 and y‘ = 0 is analogous. The case U’ = 0 ,  p’ = 0 
implies that  zo+zq-l + ~ : 2 ( ~ - 1 )  +. . . = 0 and it can be reduced 
to  the anterior cases. 

Let us now consider the situation where n 2 3 .  Let 

with ( c ’ ) ~  E @ represents the i t h  row vector of C, and let 

where T O , .  . . , ~ ~ ‘ - 1  are chosen for simplicity such that  no two 
matrices among Ao, A I , .  I . , A,-1 have the same entries. This 
requires that  the field is sufficiently large, i.e. y - 1 2 nb.  As 
shown in [l] i t  is possible to relax this requirement and we will 
address this in future work. 

Split the system 

into n - 1 systems: 

(8 )  
2 t + l  = ( A  - B(c,))zt + By,(’) 

U t  = - ( C t ) Z t  + D y y  

and choose (c~), such tha.t det(s1 - ( A  - B(c,))  = ni=,(s - 
Qr ,+k  ). In analogy to  the discussion of the case n = 2 (of 
course more cases have to  be considered) one can show that 
the resulting code is a hiIDS convolutional code of rate 1/n 
and complexity 6. 
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