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Abstract- In this paper we study the iterative decoding behav-
ior of time-invariant and time-varying LDPC convolutional codes
derived by unwrapping QC LDPC block codes. In particular,
for a time-varying LDPC convolutional code, we show that the
minimum pseudo-weight of the convolutional code is at least
as large as the minimum pseudo-weight of the underlying QC
code. We also prove that the unwrapped convolutional codes
have fewer short cycles than the QC codes. These results taken
together lead to improved BER performance in the low-to-
moderate SNR region, where the decoding behavior is influenced
by the complete pseudo-codeword spectra and by the Tanner
graph cycle histogram, with the time-varying convolutional codes
outperforming both the underlying QC block codes and their
time-invariant convolutional counterparts.

Keywords Low-density parity-check codes, convolutional
codes, pseudo-codewords, cycles, iterative decoding.

I. INTRODUCTION

The idea of deriving a convolutional code from a quasi-
cyclic (QC) block code was first introduced in a paper by
Tanner [1], where it was shown that the free distance of
the unwrapped convolutional code is lower bounded by the
minimum distance of the underlying QC code. This idea was
later extended in [2], [3].
The same idea was then applied to deriving LDPC con-

volutional codes based on QC LDPC block codes in [4], [5],
and an iterative, sliding window, message-passing decoder was
described. Even though the two LDPC codes had essentially
the same graphical representations, it was observed that the
convolutional code significantly outperformed its block code
counterpart in the waterfall region of the bit error rate (BER)
curve. In [7], we proposed a possible explanation for the
improved performance based on the differences between the
pseudo-codeword spectra of the LDPC convolutional codes
and the underlying QC LDPC block codes. We showed that
the minimum free pseudo-weight of the convolutional code
is at least as large as the minimum pseudo-weight of the
underlying QC code. Based on this relation, we conjectured
that the pseudo-weight spectrum of the convolutional code was
"thinner" than that of the block code, resulting in improved
BER performance at low-to-moderate signal-to-noise ratios
(SNRs).

In [7], we considered the method of obtaining convolutional
codes from QC block codes presented in [1], which results in

a time-invariant convolutional code structure. In [8], Jimenez-
Feltstrom and Zigangirov proposed a method of deriving
periodically time-varying LDPC convolutional codes from
randomly constructed LDPC block codes that used a matrix-
based unwrapping process. Although their method specifically
targeted randomly constructed block codes, it can be adapted
to work for any block code. In this paper, we present several
methods of deriving LDPC convolutional codes, both time-
varying and time-invariant, from QC LDPC block codes. We
also extend the pseudo-codeword analysis of [7] for time-
invariant LDPC convolutional codes to the time-varying case.

II. PRELIMINARIES

In this section we introduce the background needed for the
later development of the paper. Note that all codes are binary
linear codes. Any length n A r L quasi-cyclic (QC) code
CQC = CQrC with period L can be represented by a scalar
block parity-check matrix H(r) C MrJxrL(IF2) that consists
of J L circulant matrices of size r x r. Using the isomorphism
between the commutative ring of r x r binary circulant matrices
and the ring of polynomials IF2 [X] / (X - 1) of degree
less than r, we can associate with the scalar parity-check
matrix HQr) the polynomial parity-check matrix HQC(X) C

(IF2 [X] / (Xr_1 )) , with polynomial operations performed
modulo Xr -1. Due to the existence of this isomorphism,
we can identify two descriptions, scalar and polynomial, and
use either of the two depending on their usefulness. For
example, the following matrices are the scalar and polynomial
representations of a length n = 21 QC code C(7) c IF21 with
period 3:1

H(7) [Il I2 I4] H(7) (X) [ x2X5 ]QC [1J615 I3] QC [X6 X5 X3] 1

By permuting the rows and columns of the scalar parity-check
matrix H(r) (i.e., by taking the first row in the first block
of r rows, the first row in the second block of r rows, etc.,
then the second row in the first block, the second row in the
second block, etc., and similarly for the columns), we obtain

'Ta denotes the a-times left-circularly-shifted identity matrix.
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the parity-check matrix H(r) of a code that is equivalent to
(r)C(r) . The scalar parity-check matrix HQC has the form

Ho Hr-1 Hi
H(r) A H1 Ho - H2,
HQC.

[Hr_ Hr-2 Ho
where the scalar J x L-matrices HO, H1,.. ., Hr 1 satisfy
H(r(X) = Ho + HiX + + Hr1Xr- 1

Given the polynomial parity-check matrix of a QC code,
it is easy to see the natural connection that exists between
quasi-cyclic codes and time-invariant convolutional codes
(see, e.g., [1]-[3], [5]). Briefly, with any QC block code
c(r) C IFr'L, given by the polynomial parity-check matrix

HQ) (X) MJXL(F2[X]/(Xr - 1)), we can associate
a rate (L J)/L time-invariant convolutional code CCOnv
given by the same J x L polynomial parity-check matrix
Hconv(D) = (hjl(D))JXL = HW ) (D) = Ho +HID+ +
Hr- 1Dr-1 C M JXL(JF2[D]), where the change of variables
indicates the lack of modulo D_ 1 operations [5]. Let the
syndrome former memory ms < r -1 of Cconv be the largest
integer in {O,l,... ,r -1} such that Hms :t 0. Then the
polynomial parity-check matrix Hconv(D) has the following
scalar description:2

A

Ho
H1

Hm,

Ho

Hms-
Hms

1

From the above example, we obtain a time-invariant convo-
lutional code with polynomial parity-check matrix H,o v(D)
given by

Hconv(D)= LD6D5 D '(3)

and with syndrome former memory ms = r 1 = 6.3 This
process is referred to as the unwrapping of the QC code to
obtain a time-invariant convolutional code. In Figure 1, we use
the above example to illustrate this process using the scalar
parity-check matrices H(7) and Hconv which describe the QC
and the convolutional codes, respectively. Starting from the
binary parity-check matrix H(7) (Fig. l(a)), we reorder the

rows and columns as described above to obtain HQC and cut it
along the diagonal in steps of J x L (Fig. 1(b)). Then the upper-
diagonal portion is patched to the bottom of the lower-diagonal
portion, and the resulting diagonally-shaped matrix is repeated

2A similar convolutional-like parity-check matrix for a class of QC LDPC
block codes was recently proposed in [6].

3In some cases, a smaller value of ms may be obtained by removing com-
mon factors from the rows of the polynomial parity-check matrix Hconv (D).
For example, in (2), an equivalent Hconv(D) with ms = 3 can be obtained.

indefinitely to obtain the matrix H,onv in (2) (Fig. 1(c)). This
method of cutting and pasting parts of H(r) to obtain theQC
matrix H is naturally referred to as unwrapping H(r) toconv ~~~~~~QC
Hconv,
The relation between the minimum Hamming weight and

the minimum pseudo-weight of a QC code and those of
the unwrapped time-invariant convolutional code obtained
from it can be found in [1], [2] and [7]. For any code-
word c(D) with finite support in the time-invariant convo-
lutional code, its r wrap-around vector c(X) mod(Xr -1) e

(IF2[X]/(Xr -1)) , is a codeword in the associated QC
code, and their Hamming weights are linked by the inequality
wH(c(X) mod(Xr - 1)) < WH(c(D)), which gives the
inequality [1], [2] dmin(C(r) ) < dfree(Cconv), for all r > 1.
Moreover, for the AWGNC, BEC, and BSC pseudo-weights,
if w (D) c (R [D] ) L is a pseudo-codeword in the time-
invariant convolutional code, then w(X) mod(Xr -1) e

(R[X]/(Xr -1)) L is a pseudo-codeword in the associated
QC code and their pseudo-weights are linked by the inequality
wp (w (X) mod(Xr- 1)) < wp (w (D)), which leads to [7]

w lyin (H(r) (X)) w min (Hconv (D)) .
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Fig. 1. Deriving a time-invariant LDPC convolutional code from a QC LDPC
block code: (a) QC LDPC code, (b) after reordering of rows and columns,
(c) after unwrapping.

III. DERIVING TIME-VARYING CONVOLUTIONAL CODES
FROM QC BLOCK CODES

Motivated by the results of [8], we now consider an alter-
native version of unwrapping, without prior row and column
reordering. In this approach, we directly unwrap the binary
parity-check matrix Wr) in steps of J x L to obtain the parity-
check matrix H,Onv. In general, Hconv describes a periodically
time-varying rate R = (L -J)/L convolutional code with
syndrome former memory ms < r -1 (the same as for
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the time-invariant codes) and period r. We demonstrate this
approach in Figure 2, using the same QC block code as in
Figure 1.
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Fig. 2. Deriving a time-varying LDPC convolutional code from a QC LDPC
block code: (a) QC LDPC code, (b) after unwrapping.

Although the unwrapping step size of J x L is fixed for the
time-invariant code construction, there is no such constraint on
the step size of the time-varying unwrapping. We can choose
any step size Jk x Lk, where 0 < k < r and Jk, Lk C Z. The
special case of k = r, for example, corresponds to repeating
the original QC block code indefinitely, and is therefore of no
practical interest. On the other hand, this special case helps
to show the connection between the block and convolutional
codes. Another convenient feature of the time-varying unwrap-
ping is that a family of time-varying convolutional codes can
be derived by choosing different values for the circulant size
r of the QC block code. The resulting time-varying codes
have syndrome former memory ms < r -1 and period r for
different values of r. This property is not shared by the time-
invariant unwrapping, however, since for any circulant size r
the resulting time-invariant code is the same.

IV. PSEUDO-CODEWORDS AND CYCLES IN TIME-VARYING
CONVOLUTIONAL CODES

Similar to the comparison of the minimum Hamming
weights and the minimum pseudo-weights of the original QC
code and the unwrapped time-invariant convolutional code, we
can also compare the original QC code to the time-varying
convolutional code CCOnv given by the parity-check matrix
Hconv, Let c be a codeword with finite support in the time-
varying convolutional code and let c mod (rL) e IF,L be its
r wrap-around vector in the associated QC code.4 So, by
definition, c is in the null-space of the matrix Hconv, Note
that any row vector r of the matrix H(r) can be obtainedHQCcabeotid
by patching together two row vectors r' and r" of the matrix
Hconv that have disjoint support (no overlapping ones). Since
c is in the null space of each of the vectors r' and r",
and these vectors have disjoint support, we obtain that the
vector c mod (rL) is in the null space of the vector r. (For

4If v (Vi)0<i<N is a length-N vector then v mod A
(E: 0_ s+jA<N Vs+jA) oSs<A

example, note that the first and the fifteenth rows of the con-
volutional code matrix in Figure 2(b) can be patched together
to form the first row of the block code matrix in Figure
2(a).) Hence any codeword with finite support c in the time-
varying convolutional code wraps to a codeword c mod (rL)
in the associated QC code. Their Hamming weights are linked
through WH (c mod (rL)) < WH(C), which, similar to the
time-invariant case [1], [2], gives (under very mild conditions
on the convolutional code) the inequality

dmin(C( ) <_ dfree(Cconv), for all r > 1.

In order to compare the minimum pseudo-weights of the
two codes, we recall from [7] that we can describe the pseudo-
codewords in a code C c IF' given by a parity-check matrix
H as elements of the fundamental cone IC(H) of H. The
fundamental cone can be described by a set of inequalities [9],
[10]. Let _T A 17(H) be the set of column indices of H and
j. A 5(H) be the set of row indices of H, respectively, and,
for eachj C , let Ij A Ij(H) A {i hji = 1}
be the support of the j-th row of H. Then a vector w'
(w1 . n) C R is in the fundamental cone /ICA IC(H) if
and only if

(4)

S woi > oi for all j C 5(H) and for all i' e Ij(H).
iC(I j{i/})

(5)
Hence a pseudo-codeword satisfies certain inequalities asso-
ciated with each row of the parity-check matrix. Now let
w be a pseudo-codeword with finite support in the time-
varying convolutional code and let , mod (rL) C R L be
its r wrap-around vector in the associated QC code. As is
shown next, we have that w satisfies the fundamental cone
inequalities described above associated with each of the rows
of the matrix Hconv, Indeed, as explained above, any row
vector r of the matrix H(r) can be obtained by patching
together two row vectors r' and r" of the matrix Hconv that
have disjoint support, we obtain that the vector ' mod (rL)
satisfies the inequalities corresponding to the row r. Hence
any pseudo-codeword with finite support w in the time-varying
convolutional code wraps to a pseudo-codeword w mod (rL)
in the associated QC code. Moreover, we showed in [7] that
their AWGNC, BEC, and BSC pseudo-weights are then linked
through the inequality wp (w mod (rL)) < wp (w), which
leads to

wpi (H(r) )Xwpi (Hconv) .

It is well known that cycles in the Tanner graph representa-
tion of a sparse code affect the iterative decoding algorithm,
with short cycles generally pushing its performance further
away from optimum. (Indeed, an attempt to investigate and
minimize these effects has been made in [11] and [12], where
the authors propose LDPC code construction procedures to
maximize the connectivity of short cycles to the rest of the
graph, thus maximizing the independence of the messages
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flowing through a cycle.) Hence it is common practice to
design codes that do not contain short cycles, so as to obtain
independent messages in at least the initial steps (iterations)
of the decoding process.
We now show that unwrapped convolutional codes have

better cycle properties than their QC block code counterparts.
In particular, we show that any cycle in a convolutional code
derived by unwrapping a QC block code always maps to a
cycle of the same or smaller length in the underlying QC
block code. This result holds for both time-invariant and
time-varying convolutional codes, since the additional step of
row/column reordering in the time-invariant code derivation
does not affect the cycle structure in the Tanner graph of the
underlying block code.

Let Cconv be the convolutional code derived by unwrapping
a QC block code C(r) . Take a cycle (VI(O), VI(1), * VI(L-1))
of length 2L in the Tanner graph of the convolutional code,
such that the sequence of variable nodes, in cyclic order,
VI(o) -- VI(l) -- *..-* V/(L-1) -- Vl(o) constitutes a cycle in

the Tanner graph associated with the convolutional code. Here,
I = (1(0),(1),... , I(L -1)) is an index vector of length
L and all of its elements are unique by definition of a cycle.
Consider the modulo index vector I obtained by letting I(i) =
I(i) mod (n), i = 0,1, ... , L -1. This operation corresponds
to wrapping the convolutional code back to the underlying
QC block code and yields the path (vi(0), vi(l) . ... ,VI(L 1))
in the Tanner graph of the QC code. If all elements of this
path are unique, the path is a cycle of length 2L in the Tanner
graph of the underlying QC code. Otherwise, there is at least
one repetition in the vector I, i.e., it cannot be a cycle itself,
although it can be partitioned into shorter cycles. For any
repetition in vector I, let i and j be two positions such that
1(i) = 1(j), with j > i. This repetition yields a cycle of
length 2 min(j -i, L + i -j). It follows that

2 < 2min(j i,L+i i)< 2 §1< L < 2L.

The only case where the lower bound is achieved with equality
is when j i + 1. However, VI(i) and vI(i+l) cannot follow
each other in a cycle in the convolutional code graph, since by
construction two distinct copies of a variable node in the QC
block code cannot participate in a common check equation of
the unwrapped convolutional code. Therefore,

2 < 2min(j -i,L+i-L< 22 < L < 2L

and a cycle in the unwrapped convolutional code maps to a
cycle of the same or smaller length in the QC block code.

V. SIMULATION RESULTS

In the previous section, we showed that better pseudo-
weight properties result when we unwrap a QC block code
using the time-varying unwrapping procedure, similar to the
results of [7] for the time-invariant unwrapping. This suggests
that a time-varying LDPC convolutional code constructed in
this fashion will perform better than the underlying QC LDPC
block code. In this section we use computer simulations

on an additive white Gaussian noise (AWGN) channel to
demonstrate this improved BER performance. In addition, we
investigate how the time-varying convolutional code performs
compared to its time-invariant counterpart obtained from the
same underlying QC block code.
We take the same example code used in [7], a [155,64]

(3,5)-regular QC LDPC block code whose parity-check matrix
contains 3 ones per column and 5 ones per row with circulant
size r = 31. We apply the methods described in Section III to
construct a variety of time-invariant and time-varying convo-
lutional codes. The block code has a polynomial parity-check
matrix given by

H(r (X) =
L
x x2
x5 x10
x25 x19

x4 x8 x16 1

X20 x9 X18
x7 x14 x28 J

The rate R = b/c = 2/5 time-invariant convolutional code
obtained from this block code has syndrome former memory
ms = 28, corresponding to an overall constraint length of
v = (ms + 1) c = 145. On the other hand, we can obtain rate
R = 2/5 time-varying convolutional codes with syndrome
former memories ms = 30, 47, and 79 by performing the
time-varying unwrapping (cutting along the diagonal of H(r)QC
in steps of 3 x 5) on QC block codes with the same polynomial
parity-check matrix and circulant sizes of 31, 48, and 80,
respectively. (The time-invariant unwrapping for each of the
QC codes with different circulant sizes gives the same ms =

28 convolutional code since the time-invariant unwrapping
utilizes the polynomial parity-check matrix structure only and
not the circulant size.)
A sliding window message-passing decoder was used to

decode the convolutional codes (see, e.g., [5]). Conventional
LDPC block code decoders were employed to decode the QC
LDPC block code. All decoders were allowed a maximum
of 50 iterations, and the block code decoders employed
a syndrome-check based stopping rule. The resulting BER
performance of these codes is shown in Figure 3.

10 [fEVEV0000000W00 0155,64] QC code
[240,98] QC code ---x---

[400 162] QC code
R=2i5 time-invariant conv. code with m,=28 .

.t-2- > ' ~i*< R=2/5 time-varying conv. code with m,=30
102 .3 R=2/5 time-varying conv. code with m =47 ....

R=2/5 time-varying conv. code with m -79

1-3 '

1 0-4 - * .*. s. vss, 's4

5 _ 0 ,4

1 2 3 4 5 6
Eb/No (dB)

Fig. 3. Performance of three (3,5)-regular QC LDPC block codes and their
associated LDPC convolutional codes.

We note that the time-invariant LDPC convolutional code
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performs between 0.5dB and 1.0dB better than the QC LDPC
block code in the low-to-moderate SNR region and that the
gain drops to only about 0.2dB in the high SNR region. On
the other hand, the time-varying LDPC convolutional codes
achieve significantly better performance, with gains ranging
between 1.9dB and 2.8dB at a BER of 10-6 compared to
their corresponding QC LDPC block codes. We also note that
the gains increase with increasing circulant size.

Since all the simulated codes are (3,5)-regular, their com-
putational complexity is equivalent. Thus we adopt the notion
of processor complexity (see [13]) to compare the block
and convolutional codes. A decoder's processor complexity
is proportional to the maximum number of variable nodes
that can participate in a common check equation. This is
the block length n for a block code, since any two variable
nodes that are n -1 positions apart can participate in the
same check equation. For a convolutional code, this is equal
to the overall constraint length v, since no two variable
nodes that are more than v positions apart can participate in
the same check equation. Thus, for a comparison based on
processor complexity, we require that n = v. The time-varying
convolutional code derived from the QC code with circulant
size r = 31 has overall constraint length v = (ms+1)c = 150,
and hence approximately the same processor complexity as
the QC block code of length n = 155 and the time-invariant
convolutional code with v = 140, but it achieves large BER
gains compared to both of these codes. We note, in addition,
that the performance of the time-varying convolutional code
with syndrome former memory ms = 80 and overall constraint
length v = 400 is quite remarkable, since, at a BER of 10-5,
it performs within 1dB of the iterative decoding threshold of
0.965dB, while having the same processor complexity as a
block code of length only n = 400.

VI. DISCUSSION

The simulation results presented in Section V demonstrate
substantial BER performance gains for LDPC convolutional
codes obtained by unwrapping QC LDPC block codes. In
addition, they demonstrate that larger gains are available
with time-varying unwrappings than with time-invariant un-
wrappings. The results of [7] explain the superiority of the
time-invariant convolutional codes compared to the QC block
codes. Similarly, the results of Section IV provide a plausible
explanation for the performance difference between the time-
varying and time-invariant convolutional codes. For example,
we have examined the cycle histograms of the convolutional
codes obtained from the QC block code of length n = 155
for each type of unwrapping. The girth5 of the QC code is 8
and it has an average of 7 cycles of length 8 and 10.65 cycles
of length 10. The corresponding time-invariant convolutional
code has 5.8 cycles of length 8 and 9.6 cycles of length 10, and
the time-varying convolutional code has 3.57 cycles of length 8
and 10.32 cycles of length 10. Hence, we see that many of the
short cycles in the QC block code are broken to yield cycles of

5The class of QC LDPC codes constructed in [4], [5] is known to have
good girth properties.

larger length by the time-invariant unwrapping and that even
more cycles are broken by the time-varying unwrapping.

VII. CONCLUSIONS
In this paper, we showed that significant BER performance

gains can be achieved by unwrapping QC LDPC block codes
to obtain time-invariant and time-varying LDPC convolutional
codes. The resulting convolutional codes are shown to have
better pseudo-codeword properties and better cycle histograms,
allowing them to outperform their block code counterparts. For
example, the time-varying convolutional codes derived from
the QC LDPC block codes described in Section V have been
shown to achieve gains ranging from 1.9dB to 2.8dB at a
BER of 10-6 while operating at SNR's close to the iterative
decoding threshold.

ACKNOWLEDGMENTS
This work was partially supported by NSF Grants CCR-

0205310 and TF-0514801, NASA Grant NNG05GH73G, and
a Graduate Fellowship from the Center for Applied Mathe-
matics, University of Notre Dame.

REFERENCES
[1] R. M. Tanner, "Convolutional codes from quasi-cyclic codes: a link

between the theories of block and convolutional codes," University of
California, Santa Cruz, Tech Report UCSC-CRL-87-21, Nov. 1987.

[2] Y Levy and D. J. Costello, Jr., "An algebraic approach to constructing
convolutional codes from quasi-cyclic codes," in Coding and Quanti-
zation (Piscataway, NJ, 1992), vol. 14 of DIMACS Ser. Discrete Math.
Theoret. Comput. Sci., pp. 189-198, Providence, RI: Amer. Math. Soc.,
1993.

[3] M. Esmaeili, T. A. Gulliver, N. P. Secord, and S. A. Mahmoud, "A link
between quasi-cyclic codes and convolutional codes," IEEE Trans. on
Inform. Theory, vol. IT-44, no. 1, pp. 431-435, 1998.

[4] A. Sridharan, D. J. Costello, Jr., D. Sridhara, T. E. Fuja, and R. M.
Tanner, "A construction for low density parity check convolutional codes
based on quasi-cyclic block codes," in Proc. IEEE Intern. Symp. on
Inform. Theory, (Lausanne, Switzerland), p. 481, June 30-July 5, 2002.

[5] R. M. Tanner, A. Sridharan, D. Sridhara, T. E. Fuja, and D. J. Costello,
Jr., "LDPC block and convolutional codes based on circulant matrices,"
IEEE Trans. on Inform. Theory, vol. IT-50, no. 12, pp. 2966-2984,
December 2004.

[6] Y.Y. Tai, L. Lan, L. Zeng, S. Lin, and K.A.S. Abdel-Ghaffar, "Algebraic
construction of quasi-cyclic LDPC codes for the AWGN and Erasure
Channels," IEEE Trans. on Commun., vol. 54, no. 10, pp. 1765-1774,
October 2006.

[7] R. Smarandache, A. E. Pusane, P. 0. Vontobel, D. J. Costello,
Jr. "Pseudo-codeword Performance Analysis of LDPC convolutional
codes". IEEE Trans. Inform. Theory, to appear, available online under
http://arxiv.org/abs/cs.IT/0609148.

[8] A. Jimenez-Feltstrom and K. Sh. Zigangirov, "Time-varying periodic
convolutional codes with low-density parity-check matrix," IEEE Trans.
on Inform. Theory, vol. IT-45, pp. 2181-2191, September 1999.

[9] P. 0. Vontobel and R. Koetter, "Graph-cover decoding and finite-
length analysis of message-passing iterative decoding of LDPC codes,"
submitted to IEEE Trans. Inform. Theory, available online under
http: //www.arxiv.org/abs/cs.IT/0512078, Dec. 2005.

[10] J. Feldman, M. J. Wainwright, and D. R. Karger, "Using linear program-
ming to decode binary linear codes," IEEE Trans. on Inform. Theory,
vol. IT-51, no. 3, pp. 954-972, March 2005.

[11] T. Tian, C. R. Jones, J. D. Villasenor, and R. D. Wesel, "Selective
avoidance of cycles in irregular LDPC code construction," IEEE Trans.
on Commun., vol. COM-52, no. 8, pp. 1242-1247, August 2004.

[12] A. Ramamoorthy and R. D. Wesel, "Analysis of an algorithm for
irregular LDPC code construction," in Proc. IEEE Intern. Symp. on
Inform. Theory, (Chicago, IL), p. 69, June 27-July 2, 2004.

[13] D. J. Costello, Jr., A. E. Pusane, S. Bates, and K. Sh. Zigangirov,
"A comparison between LDPC block and convolutional codes," in
Proc. Information Theory and Applications Workshop, (San Diego, CA),
February 6-10, 2006.

1225


