Strongly MDS Convolutional Codes, A New Class of Codes with Maximal Decoding Capability ${ }^{1}$

Roxana Smarandache
Department of Mathematics,
San Diego State University,
San Diego, CA 92101 USA
rsmarand@sciences.sdsu.edu

Heide Gluesing-Luerssen
Fachbereich Mathematik, Universität Oldenburg
D-26111, Oldenburg, Germany
gluesing@mathematik.uni-oldenburg.de

Joachim Rosenthal
Department of Mathematics,
University of Notre Dame Notre Dame, IN 46556, USA
www.nd.edu/ /rosen/

Abstract

A new class of rate $1 / 2$ convolutional codes called strongly MDS convolutional codes are introduced and studied. These are codes having optimal column distances. Properties of these codes are given and a concrete construction is provided.

An $[n, k, \delta]$ convolutional code is called MDS if its free distance is maximal among all rate k / n convolutional codes of degree δ under the bound: $d_{f r e e} \leq(n-k)(\lfloor\delta / k\rfloor+1)+\delta+1$, see $[2,3]$. Strongly MDS codes are a subclass of MDS codes which have a remarkable decoding capability. We show in this paper that a $[2,1, \delta]$ strongly MDS code can correct up to δ errors in any sliding window of $4 \delta+2$ code symbols. This compares to an MDS block code with parameters [$n, n / 2$], $n=4 \delta+2$, which corrects up to δ errors in any slotted window (block) of length $4 \delta+2$.

Let \mathcal{C} be a rate $1 / 2$ convolutional code over a field \mathbb{F}, generated by $G(D)=\left[\begin{array}{ll}a(D) & b(D)\end{array}\right]$, with $a(D)=a_{0}+\ldots+$ $a_{\delta} D^{\delta}, b(D)=b_{0}+\ldots+b_{\delta} D^{\delta}, a_{0} \neq 0$ or $b_{0} \neq 0$, and $a(D), b(D)$ coprime.

A parity check matrix for \mathcal{C} is given by $H(D)=\left[\begin{array}{ll}-b(D) & a(D)\end{array}\right]$. We expand the matrix $H(D)$ into $H(D)=H_{0}+\ldots+H_{\delta} D^{\delta}, H_{j} \in \mathbb{F}^{1 \times 2}, j=0, \ldots, \delta$. Let

$$
H_{j}^{c}=\left[\begin{array}{cccc}
H_{0} \tag{1}\\
H_{1} & H_{0} & & \\
\vdots & \vdots & \ddots & \\
H_{j} & H_{j-1} & \cdots & H_{0}
\end{array}\right] \in \mathbb{F}^{(j+1) \times 2(j+1)}
$$

and let

$$
d_{j}^{c}=\min _{v_{0} \neq 0}\left\{\operatorname{wt}\left(\left(v_{0}, \ldots, v_{j}\right)\right) \mid\left(v_{0}, \ldots, v_{j}\right) \in \operatorname{ker} H_{j}^{c}\right\}
$$

be the j th column distance of the code \mathcal{C}. We have the following natural bound on the d_{j}^{c}.

Theorem 1 A convolutional code of rate $1 / 2$ has the j th column distance bounded above by $d_{j}^{c} \leq j+2$. We also have $d_{\text {free }} \leq 2 \delta+2$.

Definition 2 A code with $d_{f r e e}=2 \delta+2$ will be called MDS convolutional code.

Corollary 3 The index $j=2 \delta$ is the earliest step at which a rate $1 / 2$ MDS convolutional code can attain equality $d_{j}^{c}=$ $d_{\text {free }}$ in the distance inequality:

$$
d_{0}^{c} \leq d_{1}^{c} \leq \ldots \leq d_{\infty}^{c}=d_{\text {free }}=2 \delta+2
$$

Definition 4 A rate $1 / 2$, degree δ, convolutional code is called strongly MDS if $d_{2 \delta}^{c}=2 \delta+2=d_{\text {free }}$.

Theorem 5 Let \mathcal{C} be a $1 / 2$ rate convolutional code of degree δ. Let A be the submatrix of $H_{2 \delta}^{c}$ consisting of the columns with indices $1,3, \ldots, 2 \delta+1$ and denote by B the remaining submatrix. Put $T:=B^{-1} A$. The following statements are

[^0]equivalent:

1) The code \mathcal{C} is strongly MDS;
2) $d_{2 \delta}^{c}=2 \delta+2=d_{\text {free }}$;
3) The first column of the matrix $[T, I]$ is not a linear combination of any 2δ other columns of that matrix;
4) The matrix $T=\left[\begin{array}{cccc}h_{0} & & & \\ h_{1} & h_{0} & & \\ \vdots & & \ddots & \\ h_{2 \delta} & h_{2 \delta-1} & \cdots & h_{0}\end{array}\right]$ has the property that all its square submatrices $A_{j_{1}, \ldots, j_{r}}^{i_{1}, \ldots, i_{r}}$ formed by the i_{1}, \ldots, i_{r} rows and j_{1}, \ldots, j_{r} columns of T, are invertible, for all $1 \leq r \leq 2 \delta+1$ and all indices $1 \leq i_{1}<\ldots<i_{r} \leq$ $2 \delta+1,1 \leq j_{1}<\ldots<j_{r} \leq 2 \delta+1$ which satisfy $j_{\nu} \leq i_{\nu}$ for $\nu=1, \ldots, r$.

Example 6 Let $n=2 \delta$ and consider the $(n+1) \times(n+1)$ matrix

$$
X=\left[\begin{array}{cccc}
1 & & & \tag{2}\\
1 & 1 & & \\
& \ddots & \ddots & \\
& & 1 & 1
\end{array}\right]
$$

Then $T:=X^{n}$ is a totally positive matrix, i.e. T satisfies Property 4) over large enough prime fields, see [1].

Decoding: Let $(y(D), z(D)) \in(\mathbb{F}[D])^{2}$ be a received message and let $(v(D), w(D)) \in \mathcal{C}$ the transmitted vector and $(f(D), e(D)) \in(\mathbb{F}[D])^{2}$ the error vector, $y(D)=v(D)+$ $f(D), z(D)=w(D)+e(D)$.

Suppose we have corrected all the components received before y_{0}, z_{0}. Assuming that the weight of the error $\left[\begin{array}{llllll}f_{0} & \ldots & f_{2 \delta} & e_{0} & \ldots & e_{2 \delta}\end{array}\right]^{T}$ in this $4 \delta+2$ window is at most δ, we find an algorithm that computes f_{0} and e_{0}. Knowing f_{0} and e_{0} we update our received message, and move one step further.

The following theorem tells that such an algorithm exists.
Theorem 7 Let $f=\left(f_{0}, \ldots, f_{2 \delta}\right)^{T}, e=\left(e_{0}, \ldots, e_{2 \delta}\right)^{T}$ be two vectors in $\mathbb{F}^{2 \delta+1}$ such that

$$
\mathrm{wt}\left[\begin{array}{ll}
f & e
\end{array}\right]^{T} \leq \delta \text {. Let }
$$

$$
\left[\begin{array}{ll}
T & I
\end{array}\right]\left[\begin{array}{ll}
f & e
\end{array}\right]^{T}=\left[\begin{array}{llll}
s_{0} & s_{1} & \ldots & s_{2 \delta} \tag{3}
\end{array}\right]^{T} .
$$

If $\left[\begin{array}{cc}\tilde{f} & \tilde{e}\end{array}\right]^{T}$ is another solution of the equation (3) with $\mathrm{wt}\left[\begin{array}{ll}\tilde{f} & \tilde{e}\end{array}\right]^{T} \leq \delta$ then $f_{0}=\tilde{f_{0}}, e_{0}=\tilde{e}_{0}$.

References

[1] I. G. Macdonald. Symmetric functions and Hall polynomials. The Clarendon Press Oxford University Press, New York, second edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications.
[2] J. Rosenthal and R. Smarandache. Maximum distance separable convolutional codes. Appl. Algebra Engrg. Comm. Comput., 10(1):15-32, 1999.
[3] R. Smarandache, H. Gluesing-Luerssen, and J. Rosenthal. Constructions for MDS-convolutional codes. IEEE Trans. Inform. Theory, 47(5):2045-2049, 2001.

[^0]: ${ }^{1}$ Authors were supported in part by NSF grant DMS-00-72383.

