Strongly MDS Convolutional Codes, A New Class of Codes with Maximal Decoding Capability¹

Roxana Smarandache Department of Mathematics, San Diego State University, San Diego, CA 92101 USA rsmarand@sciences.sdsu.edu

Heide Gluesing-Luerssen Fachbereich Mathematik, Universität Oldenburg D-26111, Oldenburg, Germany gluesing@mathematik.uni-oldenburg.de

2

Abstract — A new class of rate 1/2 convolutional codes called strongly MDS convolutional codes are introduced and studied. These are codes having optimal column distances. Properties of these codes are given and a concrete construction is provided.

An $[n, k, \delta]$ convolutional code is called MDS if its free distance is maximal among all rate k/n convolutional codes of degree δ under the bound: $d_{free} \leq (n-k) (\lfloor \delta/k \rfloor + 1) + \delta + 1$, see [2, 3]. Strongly MDS codes are a subclass of MDS codes which have a remarkable decoding capability. We show in this paper that a $[2, 1, \delta]$ strongly MDS code can correct up to δ errors in any sliding window of $4\delta + 2$ code symbols. This compares to an MDS block code with parameters [n, n/2], $n = 4\delta + 2$, which corrects up to δ errors in any slotted window (block) of length $4\delta + 2$.

Let \mathcal{C} be a rate 1/2 convolutional code over a field \mathbb{F} , generated by $G(D) = \begin{bmatrix} a(D) & b(D) \end{bmatrix}$, with $a(D) = a_0 + \dots + a_{\delta}D^{\delta}$, $b(D) = b_0 + \dots + b_{\delta}D^{\delta}$, $a_0 \neq 0$ or $b_0 \neq 0$, and a(D), b(D)coprime.

A parity check matrix for C is given by

 $H(D) = [-b(D) \quad a(D)]$. We expand the matrix H(D) into $H(D) = H_0 + \ldots + H_{\delta} D^{\delta}, H_j \in \mathbb{F}^{1 \times 2}, j = 0, \ldots, \delta$. Let

$$H_{j}^{c} = \begin{bmatrix} H_{0} & & \\ H_{1} & H_{0} & & \\ \vdots & \vdots & \ddots & \\ H_{j} & H_{j-1} & \dots & H_{0} \end{bmatrix} \in \mathbb{F}^{(j+1) \times 2(j+1)}$$
(1)

and let

$$d_j^c = \min_{v_0 \neq 0} \left\{ \operatorname{wt}((v_0, \dots, v_j)) \middle| (v_0, \dots, v_j) \in \ker H_j^c \right\},\$$

be the *j*th column distance of the code C. We have the following natural bound on the d_i^c

Theorem 1 A convolutional code of rate 1/2 has the jth column distance bounded above by $d_j^c \leq j+2$. We also have $d_{free} \leq 2\delta + 2.$

Definition 2 A code with $d_{free} = 2\delta + 2$ will be called MDS convolutional code.

Corollary 3 The index $j = 2\delta$ is the earliest step at which a rate 1/2 MDS convolutional code can attain equality $d_i^c =$ d_{free} in the distance inequality:

$$d_0^c \le d_1^c \le \ldots \le d_\infty^c = d_{free} = 2\delta + 2.$$

Definition 4 A rate 1/2, degree δ , convolutional code is called strongly MDS if $d_{2\delta}^c = 2\delta + 2 = d_{free}$.

Theorem 5 Let C be a 1/2 rate convolutional code of degree δ . Let A be the submatrix of $H_{2\delta}^c$ consisting of the columns with indices $1, 3, \ldots, 2\delta + 1$ and denote by B the remaining submatrix. Put $T := B^{-1}A$. The following statements are

Joachim Rosenthal Department of Mathematics, University of Notre Dame Notre Dame, IN 46556, USA www.nd.edu/~rosen/

equivalent: 1) The code C is strongly MDS;

$$d_{2\delta}^c = 2\delta + 2 = d_{free};$$

3) The first column of the matrix [T, I] is not a linear combi-3) The just columns of one matrix, nation of any 2δ other columns of that matrix; $[h_0]$

4) The matrix
$$T = \begin{bmatrix} h_0^{h_0} & h_1 & h_0 \\ \vdots & \ddots & \vdots \\ h_{2\delta} & h_{2\delta-1} & \cdots & h_0 \end{bmatrix}$$
 has the prop-

erty that all its square submatrices $A_{j_1,\ldots,j_r}^{i_1,\ldots,i_r}$ formed by the i_1,\ldots,i_r rows and j_1,\ldots,j_r columns of T, are invertible, for all $1 \leq r \leq 2\delta + 1$ and all indices $1 \leq i_1 < \ldots < i_r \leq 2\delta + 1, 1 \leq j_1 < \ldots < j_r \leq 2\delta + 1$ which satisfy $j_{\nu} \leq i_{\nu}$ for $\nu = 1, \ldots, r$.

Example 6 Let $n = 2\delta$ and consider the $(n + 1) \times (n + 1)$ matrix F 1

$$X = \begin{bmatrix} 1 & 1 & & \\ 1 & 1 & & \\ & \ddots & \ddots & \\ & & 1 & 1 \end{bmatrix}.$$
 (2)

Then $T := X^n$ is a totally positive matrix, i.e. T satisfies Property 4) over large enough prime fields, see [1].

Decoding: Let $(y(D), z(D)) \in (\mathbb{F}[D])^2$ be a received message and let $(v(D), w(D)) \in \mathcal{C}$ the transmitted vector and $(f(D), e(D)) \in (\mathbb{F}[D])^2$ the error vector, y(D) = v(D) + v(D) $\widetilde{f}(D), z(D) = w(D) + e(D).$

Suppose we have corrected all the components received before y_0 , z_0 . Assuming that the weight of the error $[f_0 \dots f_{2\delta} e_0 \dots e_{2\delta}]^T$ in this $4\delta + 2$ window is at most δ , we find an algorithm that computes f_0 and e_0 . Knowing f_0 and e_0 we update our received message, and move one step further.

The following theorem tells that such an algorithm exists.

Theorem 7 Let $f = (f_0, \ldots, f_{2\delta})^T$, $e = (e_0, \ldots, e_{2\delta})^T$ be two vectors in $\mathbb{F}^{2\delta+1}$ such that wt $\begin{bmatrix} f & e \end{bmatrix}^T \leq \delta$. Let

$$\begin{bmatrix} T & I \end{bmatrix} \begin{bmatrix} f & e \end{bmatrix}^T = \begin{bmatrix} s_0 & s_1 & \dots & s_{2\delta} \end{bmatrix}^T.$$
(3)

If $\begin{bmatrix} \tilde{f} & \tilde{e} \end{bmatrix}^T$ is another solution of the equation (3) with wt $\begin{bmatrix} \tilde{f} & \tilde{e} \end{bmatrix}^T \leq \delta$ then $f_0 = \tilde{f}_0, e_0 = \tilde{e}_0$.

REFERENCES

- I. G. Macdonald. Symmetric functions and Hall polynomials. The Clarendon Press Oxford University Press, New York, second edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications.
- J. Rosenthal and R. Smarandache, Maximum distance separa-[2] ble convolutional codes. Appl. Algebra Engrg. Comm. Comput., 10(1):15-32, 1999.
- [3] R. Smarandache, H. Gluesing-Luerssen, and J. Rosenthal. Con-Structions for MDS-convolutional codes. *IEEE Trans. Inform.* Theory, 47(5):2045–2049, 2001.

¹Authors were supported in part by NSF grant DMS-00-72383.