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1. Introduction.

In this paper we consider packings of symplectic manifolds by La-
grangian tori. Since every symplectic manifold contains infinitely many
disjoint Lagrangian tori, we must set a scale in order to pose meaningful
questions. We therefore restrict our attention to Lagrangian tori whose
area homomorphism takes only integer values. These will be referred
to as integral Lagrangian tori.1) The fundamental packing question, in
this setting, is the following.

What is the maximum number of disjoint integral Lagrangian tori con-
tained in a given (pre)compact symplectic manifold?

A more approachable version of this question is to consider a specific
collection of disjoint integral Lagrangian tori in a symplectic manifold
(M,ω), and to ask if it is a maximal integral packing in the sense that
any other integral Lagrangian torus in M must intersect at least one
torus in the collection. In this paper, we study this question in the
simplest nontrivial setting.

1.1. Results. Equip the sphere S2 with its standard symplectic form
ω scaled so that

∫
S2 ω = 2. Let L1,1 be the monotone Clifford torus

(product of equators) in (S2 × S2, π∗1ω + π∗2ω). Our first result is the
following.

Theorem 1.1. The Clifford torus L1,1 is a maximal integral packing
of (S2 × S2, π∗1ω + π∗2ω).

For real numbers a, b > 0, consider the symplectic polydisk
P (a, b) =

{
(z1, z2) ∈ C2 | π|z1|2 < a, π|z2|2 < b

}
⊂ R4.

Identifying L1,1 with the standard Clifford torus in R4, Theorem 1.1
implies that L1,1 is a maximal integral packing of each P (a, b) with
1 < a, b < 2.

Date: September 3, 2021.
Both authors are supported by grants from the Simons Foundation.
1)These are also sometimes called Bohr-Sommerfeld Lagrangians.

1



2 RICHARD K. HIND AND ELY KERMAN

If a and b are both greater then 2, then a natural candidate for a max-
imal integral packing of P (a, b) is the collection of integral Lagrangian
tori

{Lk,l | k, l ∈ N, k ≤ bac, l ≤ bbc},

where Lk,l is the product of the circle about the origin bounding area k
in the z1-plane with the circle about the origin bounding area l in the
z2-plane. The analogous packing in dimension two is always maximal.
Our second result shows that, in dimension four, this candidate always
fails.

Theorem 1.2. If min(a, b) > 2, then {Lk,l | k, l ∈ N, k ≤ bac, l ≤ bbc}
is not a maximal integral packing of P (a, b). For every ε > 0 there is
an integral Lagrangian torus L+ in

P (2 + ε, 2 + ε) r {Lk,l | k, l ∈ {1, 2}}.

1.2. Overview. The first step in our proof of Theorem 1.1 is to show
that any integral Lagrangian torus in (S2 × S2, π∗1ω + π∗2ω) is actually
monotone. This follows from the work of Hind and Opshtein in [10],
and is proved in Lemma 3.2 below. Arguing by contradiction, we then
assume there is a monotone Lagrangian torus L in (S2×S2, π∗1ω+π∗2ω)
that is disjoint from the Clifford torus L1,1. The work of Ivrii in [12],
and Dimitroglou-Rizell, Goodman, and Ivrii in [6], implies that there is
a finite energy holomorphic foliation F of S2×S2r(L∪L1,1) which has
a normal form near L and L1,1 (see Section 3.5). We use F to establish
the existence of two symplectic spheres, F andG, in (S2×S2, π∗1ω+π∗2ω)
(see Proposition 3.20 and Proposition 3.22). Both F and G represent a
homology class of the form (1, d) ∈ H2(S

2×S2;Z) = Z2 for some large
d. They also have special intersection properties with the leaves of F
and with each other (see Section 3.7 and Proposition 3.24). Using the
spheres F and G, together with the operations of blow-up, inflation,
and blow-down, we then alter the ambient symplectic manifold away
from L ∪ L1,1 to obtain a new monotone symplectic manifold, (X,Ω).
This new manifold is symplectomorphic to (S2 × S2, (d + 1)(π∗1ω +
π∗2ω)) and L and L1,1 remain disjoint and monotone therein. However
the images (transforms) of the spheres F and G in (X,Ω) are now in
the class (1, 0) and their existence implies, by the work of Cielieback
and Schwingenheur in [4], that L and L1,1 must both be Hamiltonian
isotopic to the Clifford torus in (X,Ω). It then follows from standard
monotone Lagrangian Floer thoery, [19], that it is not possible for L and
L1,1 to be disjoint. This contradiction completes the proof of Theorem
1.1.
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To prove Theorem 1.2 we construct, for every ε > 0, an explicit em-
bedding of the closure of P (1, 1) into P (2+ε, 2+ε)r{Lk,l | k, l ∈ {1, 2}},
using a time-dependent Hamiltonian flow. The desired Lagrangian, L+,
is the one on the boundary of the image.

1.3. Commentary and further questions. Given that Theorem 1.1
is reduced to the problem of detecting intersection points of two mono-
tone Lagrangian tori, using [10], it is natural to ask whether Lagrangian
Floer theory (rigid holomorphic curves) can also be used to prove The-
orem 1.1 directly. To the knowledge of the authors this is not yet pos-
sible. The following result seems to be as close to a proof of Theorem
1.1 as one can currently get using Lagrangian Floer theory.

Theorem 1.3. Suppose that L is a monotone Lagrangian torus in
(S2 × S2, π∗1ω + π∗2ω). If the Lagrangian Floer homology of L, with
respect to some C∗-local system, is nontrivial, then L must intersect
L1,1.

This follows from work of Evans and Lekili in [5] which implies
that the Clifford torus split-generates the monotone Fukaya category
of (S2 × S2, π∗1ω + π∗2ω). It is not known whether there exist mono-
tone Lagrangian tori in (S2 × S2, π∗1ω + π∗2ω) whose Lagrangian Floer
homology is trivial for every choice of C∗-local system. In [20], Vianna
constructs a countably infinite collection of monotone Lagrangian tori
in (S2×S2, π∗1ω+π∗2ω), no two of which are Hamiltonian isotopic. Each
of the tori in Vianna’s collection satisfies the hypothesis of Theorem
1.3.

The following question, in the sprit of Theorem 1.1, remains unre-
solved.

Question 1.4. Does every pair of monotone Lagrangian tori in (S2 ×
S2, π∗1ω + π∗2ω) intersect?

Progress on other aspects of the study of disjoint Lagrangian tori has
also recently been made in two related works by Mak and Smith, in
[14], and by Polterovich and Shelukhin, in [18]. Let {γi} be a collection
of disjoint circles bounding disks of the same area, and let E be the
equator in the sphere S2. In [14] and [18], it is shown that, with respect
to certain nonmonotone symplectic forms on S2 × S2, packings of the
form L = tγi×E are maximal in the sense that any Lagrangian torus
Hamiltonian isotopic to γ1 × E must intersect L. In comparison, the
maximal packing given by Theorem 1.1 only includes a single torus,
L1,1, but we do not assume any other tori are Hamiltonian isotopic to
it. Theorem 1.2 shows that analogous packings of the form tγi × γj
are no longer maximal.
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Below are a few of the questions suggested by Theorem 1.2 which
also remain unresolved.

Question 1.5. Is every integral Lagrangian torus in P (2 + ε, 2 + ε) r
{Lk,l | k, l ∈ {1, 2}}, Hamiltonian isotopic to L1,1?

Question 1.6. Suppose 2 < a, b < 3. Are there six disjoint integral
Lagrangian tori in P (a, b)?

Question 1.7. Suppose 2 < b < 3. Are there three disjoint integral
Lagrangian tori in P (2, b)?

2. Conventions, labels and notation

Every copy of the two dimensional sphere S2 will implicitly be iden-
tified with the unit sphere in R3 and we will label the north and
south poles by ∞ and 0, respectively. In (S2 × S2, π∗1ω + π∗2ω), we
use these points to define the four symplectic spheres S0 = S2 × {0},
S∞ = S2 × {∞}, T0 = {0} × S2 and T∞ = {∞} × S2. The ordered
basis {[S0], [T0]} of H2(S

2 × S2;Z) is used to identify it with Z2.
Let L ⊂ (M,Ω) be a Lagrangian torus in a four dimensional sym-

plectic manifold. A diffeomorphism ψ from T2 = S1 × S1 to L will be
referred to as a parameterization of L. It specifies a basis of H1(L;Z)
and thus an isomorphism from H1(L;Z) to Z2. We will denote this
copy of Z2 by Hψ

1 (L;Z). The parameterization ψ can also be extended
to a symplectomorphism Ψ from a neighborhood of the zero section
in T ∗T2 to a Weinstein neighborhood U(L) of L in M . We will de-
note the corresponding coordinates in the neighborhood U(L) of L by
(p1, p2, q1, q2) and, for simplicity, we will assume that

U(L) = {|p1| < ε, |p2| < ε},

for some ε > 0.

3. Proof of Theorem 1.1.

Arguing by contradiction, we begin with the following.

Assumption 1. There is an integral Lagrangian torus L in (S2 ×
S2, π∗1ω + π∗2ω) which is disjoint from the Clifford torus L1,1.

Below we show that Assumption 1 can be refined in three ways.
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3.1. Refinement 1. We may assume that L is monotone. A
symplectic manifold (M,Ω) is monotone if the Chern and area homo-
morphisms,

c1 : π2(M) ⊂ H2(M,Z)→ Z and Ω: π2(M)→ R,
are positively proportional. Recall that a Lagrangian submanifold L ⊂
(M,Ω) is monotone if its Maslov and area homomorphisms,

µ : π2(M,L)→ Z and Ω: π2(M,L)→ R,
are positively proportional. We will denote the constant of proportion-
ality of L by λ.

If L is a Lagrangian torus, then one can verify monotonicity by
checking it for a collection of disks whose boundaries generateH1(L;Z).

Lemma 3.1. Suppose that (M,Ω) is a symplectic four manifold which
is monotone with constant λ

2
. A Lagrangian torus L in (M,Ω) is mono-

tone with constant λ if there are two smooth maps v1, v2 : (D2, S1) →
(M,L) such that the boundary maps v1|S1 and v2|S1 determine an in-
tegral basis of H1(L;Z) = Z2 and µ([vi]) = λΩ([vi]) for i = 1, 2.

Refinement 1 is validated by the following result.

Proposition 3.2. Every integral Lagrangian torus L in (S2×S2, π∗1ω+
π∗2ω) is monotone.

Proof. By Theorem C of [6] there is a Hamiltonian diffeomorphism
which displaces L from the pair of spheres S∞ ∪ T∞. Hence, L can
be identified with an integral Lagrangian torus L inside the polydisk
P (2− ε, 2− ε) ⊂ (R4, ω4) for some sufficiently small ε > 0. By Lemma
3.1, it suffices to find two smooth maps v1, v2 : (D2, S1)→ (R4,L) such
that the boundary maps v1|S1 and v2|S1 determine an integral basis of
H1(L;Z) and µ([vi]) = 2ω4([vi]) for i = 1, 2. Simplifying further, we
note that, for R4, the maps µ and ω4 can be recast as homomorphisms

µ : H1(L;Z)→ Z and ω4 : H1(L;Z)→ R
and it suffices to find an integral basis {e1, e2} of H1(L;Z) such that
µ(ei) = 2ω4(ei) for i = 1, 2.

Since L is contained in P (2−ε, 2−ε), it follows from [3] that there is a
smooth map f : (D,S1)→ (R4,L) of Maslov index 2 whose symplectic
area is positive and less than two. Since L is integral, the area of f
must be equal to one. If e1 is the element of H1(L;Z) represented by
f |S1 , then we have µ(e1) = 2 and ω4(e1) = 1.

Let c be a class in H1(L;Z) such that {e1, c} is an integral basis.
Since µ(c) is even, by adding integer multiples of e1 to c, if necessary,
we may assume that µ(c) = 2. It remains to show that ω4(c) = 1.
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Arguing by contradiction, assume that ω4(c) 6= 1. Set

ĉ =

{
c if ω4(c) > 1,

c+ 2(e1 − c) if ω4(c) < 1.

Then {e1, ĉ} is an integer basis of H1(L;Z) that satisfies

ω4(e1) = 1, ω4(ĉ) ≥ 2

and
µ(e1) = µ(ĉ) = 2.

In [10], Hind and Opshtein prove that if a Lagrangian torus in P (a, b)
admits such a basis, then either a > 2 or b > 2. This contradicts the
assumption that L lies in P (2− ε, 2− ε) and we are done. �

3.2. Refinement 2: We may assume that L lies in the comple-
ment of S0∪S∞∪T0∪T∞. To verify this, we utilize the relative finite
energy foliations from [6] which we now recall.

3.2.1. Foliations of (S2 × S2) r L following [6]. In [7], Gromov proves
that for any smooth almost-complex structure J on S2 × S2 that is
tamed by the symplectic form π∗1ω+π∗2ω, there is a foliation of S2×S2

by J-holomorphic spheres in the class (0, 1) (and another with fibres
in the class (1, 0)). For any monotone Lagrangian torus L ⊂ (S2 ×
S2, π∗1ω+π∗2ω), there is an analogous relative theory, developed first by
Irvrii in [12], and completed in Dimitroglou-Rizell, Goodman and Ivrii
in [6], with input from [21] and [8]. This yields symplectic S2-foliations
of S2×S2 that are compatible with L. These are obtained by stretching
certain Gromov foliations along L and smoothing the compactifications
of the limiting buildings with more than one level. We now describe a
version of this theory that has been adapted for the purposes of this
paper. As in [8], we only consider the curves which, after stretching,
map to S2 × S2 r L.

Input. Let L be a monotone Lagrangian torus in (S2 × S2, π∗1ω +
π∗2ω). Fix a parameterization ψ of L and the corresponding Weinstein
neighborhood

U(L) = {|p1| < ε, |p2| < ε}.
Fix a tame almost complex structure J on (S2 × S2 r L, π∗1ω + π∗2ω)
such that in U(L) we have

J
∂

∂qi
= −

√
p21 + p22

∂

∂pi
.

Recall that each negative end of a finite energy J-holomorphic curve
u mapping to S2 × S2 r L is asymptotic to a closed Reeb orbit on a
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copy of the flat unit cotangent bundle, S∗LT2, of T2, corresponding to
L. This Reeb orbit covers a closed geodesic, γ, of the flat metric on T2.
In this case, we simply say that the end of u is asymptotic to L along
γ.
Output. From this input, one can construct, as in §2.5 of [6], a family
of almost complex structures Jτ on S2 × S2 for τ ≥ 0. Taking the
limit of the Gromov foliations for the Jτ as τ → ∞, it follows from
Theorem D and Proposition 5.16 of [6] that one obtains a foliation
F = F(L, ψ, J) of S2 × S2 r L with the following properties.

• The foliation F has two kind of leaves: unbroken ones consisting
of a single closed J-holomorphic sphere in S2 × S2 r L of class
(0, 1), and broken leaves consisting of a pair of finite energy
J-holomorphic planes in S2 × S2 r L.
• Each leaf of F intersects S∞ in exactly one point. For a broken
leaf this means that exactly one of its planes intersects S∞.
• The ends of two planes of a broken leaf are asymptotic to the
same geodesic, but with opposite orientations. This geodesic is
embedded. We denote its homology class, equipped with the
orientation determined by the plane which intersects S∞, by
β ∈ H1(L;Z). This class is the same for all broken leaves of F
and is referred to as the foliation class of F .
• Each point z ∈ S2 × S2 r L lies in a unique leaf of F , and
each point of L lies on a unique geodesic in the foliation class
β that corresponds to a unique plane of a broken leaf of F that
intersects S∞.
• Let p : S2 × S2 → S∞ be the map which takes z ∈ S2 × S2 r L
to the intersection of its leaf with S∞, and takes z ∈ L to the
intersection with S∞ of the broken leaf asymptotic to the unique
geodesic through z representing the foliation class. The map is
well defined by positivity of intersection since S∞ is complex.
Then p(L) is an embedded closed curve in S∞. Moreover, if L
is homotopic to L1,1 in the complement of T0 ∪ T∞, then p(T0)
and p(T∞) (which are points since T0 and T∞ are complex) lie
on opposite sides of the closed curve p(L).
• If L is disjoint from S0 ∪ S∞ ∪ T0 ∪ T∞, then we may assume
this configuration of symplectic spheres is J-complex

Lemma 3.3. (Straightening). For all sufficiently small ε > 0 we may
assume, by perturbing J outside of U(L), that the unbroken leaves of F
that intersect U(L) do so along the annuli {p1 = δ, q1 = θ,−ε < p2 < ε}
for some θ ∈ S1 and nonzero δ ∈ (−ε, ε). As well, the planes of broken
leaves of F through S∞ intersect U(L) along the annuli {p1 = 0, q1 =
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θ, 0 < p2 < ε}, for some θ ∈ S1, and the planes of F through S0

intersect U(L) along the annuli {p1 = 0, q1 = θ,−ε < p2 < 0}.
Proof. The statement for broken leaves was established in Proposition
5.16 of [6] (see the first bullet point of the proof). Given this, our
unbroken leaves intersect ∂U(L) close to p1 = 0 in circles smoothly
approximating circles {p1 = δ, q1 = θ, p2 = ±ε}. We look first at the
parts of these leaves mapping to the complement of U(L), which are
families of holomorphic disks. Perturbing the disks we may assume they
intersect ∂U(L) close to p1 = 0 precisely in the circles {p1 = δ, q1 =
θ, p2 = ±ε} while remaining symplectic and smoothly converging to
the broken leaves. Hence changing J outside of U(L) we may assume
the perturbed disks remain holomorphic. These new disks match with
the annuli {p1 = δ, q1 = θ,−ε < p2 < ε} to give holomorphic spheres
in the class (0, 1), and in fact by positivity of intersection these are the
only spheres in the class intersecting the region {|p1| < ε}, at least if we
shrink ε to include only the region where the perturbations apply. �

Solid tori. In the case when L is disjoint from S0 ∪ S∞ ∪ T0 ∪ T∞
we define T∞ be the set of all the J-holomorphic planes of the broken
leaves which intersect S∞. This set can be collectively compactified to
obtain a smoothly embedded solid torus in S2 × S2 whose boundary
is L. Similarly, the set T0 consisting of the other planes of the broken
leaves can be used to obtain another solid torus with boundary on L.
Note that, since the planes in T0 and T∞ fit together to form spheres
in the class (0, 1), by positivity of intersection a J-holomorphic sphere
u : S2 → S2 × S2 r L in a class of the form (1, d) must either intersect
the all the planes of T∞ once, or all the planes of T0 once.

Example 3.4. For the Clifford torus L1,1 ⊂ S2 × S2 and a J adapted
to the standard parameterization ψ1,1 of L1,1, we get a foliation F1,1 of
S2× S2 rL1,1 with leaves in the class (0, 1). The broken leaves of F1,1

comprise two families of J-holomorphic planes with boundary on L1,1:
s0 which consisting of planes intersecting S0 and s∞ which consists of
the planes intersecting S∞.

Remark 3.5. One also obtains, for the same J , an analogous foliation
whose leaves represent the class (1, 0).

The following result establishes Refinement 2. The proof is based on
that of Corollary E in [6].

Proposition 3.6. Suppose that L is a monotone Lagrangian torus in
(S2×S2, π∗1ω+π∗2ω) that is disjoint from L1,1. Then there is a Hamilton-
ian diffeomorphism φ of S2×S2which displaces L from S0∪S∞∪T0∪T∞
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and is supported away from L1,1. Moreover, φ(L) is homotopic to L1,1

in the complement of T0 ∪ T∞ and also in the complement of S0 ∪ S∞.

Proof. We start with an almost-complex structure J0 on S2×S2 adapted
to the standard parameterization ψ1,1 of L1,1. We also assume that J0
is standard in a Weinstein neighborhood U(L) of L that is disjoint
from L1,1. Let F0 be the corresponding J0-holomorphic foliation of
S2 × S2 r L1,1 and let p0 : S2 × S2 → S∞ be the corresponding map.
We may assume that the points p0(T0) and p0(T∞) lie in different com-
ponents of S∞ r p0(L1,1).

Deform J0 to a family Jt for t ≥ 0 by stretching the neck, as in [1],
along a sphere bundle in U(L) that is disjoint from L1,1. This yields a
family of foliations Ft of S2×S2rL1,1. Since the planes of the broken
leaves of F0 have minimal area they persist under the deformation to
yield the planes of the broken leaves of Ft. This yields a family of maps
pt : S

2 × S2 → S∞.

Lemma 3.7. The sets pt(L) in S∞ converge in the Hausdorff topology
to a circle C∞ ∈ S∞ as t→∞.

Proof. Let J∞ be the limiting almost complex structure which is fully
stretched along L. The circle C∞ is the intersection with S∞ of the
broken leaves of the J∞ foliation which are asymptotic to L. Now, pt(L)
consists of the intersection with S∞ of Jt holomorphic spheres which
intersect L. Hence a sequence of points zt ∈ pt(L) corresponds to a
sequence of Jt holomorphic curves in the class (0, 1) which all intersect
L. Up to taking a subsequence, this sequence of curves converges to a
broken curve asymptotic to L and hence the zt converge to a point in
C∞. �

Lemma 3.8. If we denote the projection with respect to the fully stretched
almost-complex structure by p∞, then C∞ = p∞(L) is disjoint from
p∞(L1,1).

Proof. This follows from the fact that the original planes of the broken
leaves have area 1 and so cannot degenerate further. Indeed, since L is
monotone, any holomorphic curve asymptotic to L must have integral
area, and in particular curves in the class (0, 1) cannot converge to
buildings with more than two top level curves. �

It follows from the results above that there is an N > 0 such that
pt(L1,1) is disjoint from C∞ for all t ≥ N . With this we can choose two
continuous curves γ0, γ∞ : [0,∞)→ S∞ with the following properties:

• γ0(0) = p0(T0), and γ∞(0) = p0(T∞).
• γ0(t) and γ∞(t) are disjoint from pt(L1,1) for all t ∈ [0,∞).
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• For some N > 0, both γ0(t) and γ∞(t) are disjoint from C∞,
and C∞ is disjoint from pt(L1,1) for all t ≥ N .
• C∞ separates γ0(N) and γ∞(N) in S∞.

For each t ∈ [0,∞), both p−1t (γ0(t)) and p−1t (γ∞(t)) are Jt-holomorphic
spheres in the class (0, 1) disjoint from L1,1. The family of spheres

{p−1t (γ0(t))}t∈[0,N ]

forms a symplectic isotopy which displaces T0 from L in the complement
of L1,1. Similarly, the family of spheres

{p−1t (γ∞(t))}t∈[0,N ]

forms a symplectic isotopy which displaces T∞ from L in the comple-
ment of L1,1. Moreover, these isotopies can be generated by a single
Hamiltonian flow on S2×S2 that fixes L1,1. The inverse flow displaces
L from T0 ∪ T∞. The final separation condition is enough to guaran-
tee the homotopy condition in the theorem. By considering also the
Jt holomorphic foliation in the class (1, 0) (see Remark 3.5), we can
displace L from S0 ∪ S∞ too. After adjusting the isotopy of S0 ∪ S∞
we may assume that it fixes T0 ∪ T∞, see Corollary 3.7 of [6]. Hence
the inverse flow will not reintroduce intersections with T0 or T∞. �

3.3. Refinement 3: We may assume that L is homologically
trivial in (S2 × S2) r (S0 ∪ S∞ ∪ T0 ∪ T∞). To see this, note that
(S2 × S2) r (S0 ∪ S∞ ∪ T0 ∪ T∞) can be identified with a subset of the
cotangent bundle of T2 in which L1,1 is identified with the zero section.
In this setting we can invoke the following.

Theorem 3.9. (Theorem 7.1, [6]) A homologically nontrivial Lagrangian
torus L in (T ∗T2, dλ) is Hamiltonian isotopic to a constant section. In
particular if L is exact then it is Hamiltonian isotopic to the zero sec-
tion.

If our monotone Lagrangian L was homologically nontrivial in (S2×
S2) r (S0 ∪ S∞ ∪ T0 ∪ T∞) it would then follow from Theorem 3.9 and
Section 2.3.B′′4 of [7] that L ∩ L1,1 6= ∅, which would contradict our
original assumption.

3.4. A path to the proof of Theorem 1.1. By the three Refine-
ments established above, it suffices to show that the following assump-
tion is false.

Assumption 2. There is a monotone Lagrangian torus L in the set

Y = (S2 × S2) r (S0 ∪ S∞ ∪ T0 ∪ T∞)
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which is disjoint from the Clifford torus L1,1 and is homologically trivial
in Y .

A path to a contradiction. To obtain a contradiction to Assump-
tion 2, we will show, using a sequence of blow-ups, inflations and
blow-downs, that it implies the existence of two disjoint monotone La-
grangian tori in a new (monotone) copy of S2 × S2 which are both
Hamiltonian isotopic to the Clifford torus therein, and hence can not
be disjoint.

To perform the necessary sequence of blow-ups, inflations and blow-
downs, we must first establish the existence of a special collection sym-
plectic spheres and disks in our current model (see Proposition 3.24
below). These spheres and discs must be well-placed with respect to a
holomorphic foliation of S2×S2r (L∪L1,1) which we introduce below
in Section 3.5. They are obtained from special holomorphic buildings
whose existence we establish in Section 3.7. These existence results
rely on the analysis of a general stretching scenario that is contained
in Section 3.6.

Remark 3.10. To falsify Assumption 2, we must use it to a build
and analyze a complicated set of secondary objects in order to derive
a contradiction. The reader is asked to bear in mind that many of the
results established in the remainder of this section hold in a setting
which will later be shown to be impossible.

3.5. Straightened holomorphic foliations of S2 × S2 r (L∪L1,1),
under Assumption 2. Let L be a Lagrangian torus as in Assumption
2. Here we describe the holomorphic foliations of S2 × S2 r (L ∪ L1,1)
that are implied by the existence of L.

Let ψ be a parameterization of L and ψ1,1 be the standard parame-
terization of L1,1. Consider a tame almost complex structure J on

(S2 × S2 r (L ∪ L1,1), π
∗
1ω + π∗2ω)

which is adapted to both ψ and ψ1,1. We will always make the following
assumption.
(A1) J is equal to the standard split complex structure near S0, S∞,

T0 and T∞. In particular, T0 and T∞ are unbroken leaves of the
foliation.

Let Jτ be the family of almost complex structures on S2 × S2 that
are determined by J as in §2.5 of [6]. Taking the limit of the Gromov
foliations in the class (0, 1) with respect to the Jτ , as τ → ∞, and
arguing as in [6], we get a J-holomorphic foliation

F = F(L, L1,1, ψ, ψ1,1, J)
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of S2×S2r (L∪L1,1). Each leaf of F still intersects S∞ in exactly one
point, but there are now three types of leaves. The first are unbroken
leaves consisting of a single closed J-holomorphic sphere in S2 × S2 r
(L ∪ L1,1) of class (0, 1). The second type of leaves are broken and
consist of a pair of finite energy J-holomorphic planes in S2×S2r(L∪
L1,1) that are asymptotic to L1,1 along the same embedded geodesic
with opposite orientations. As in Example 3.4, the collection of planes
like this which intersect S∞ comprise a 1-dimensional family, s∞, and
their companion planes comprise a family s0. The third class of leaves
are also broken, but consist of a pair of finite energy J-holomorphic
planes in S2×S2r(L∪L1,1) asymptotic to L. They too have matching
ends. The planes of these broken leaves which intersect S∞ comprise
the family T∞ and the others comprise the family T0, as in §3.2.1.

Refinement 3 has the following consequence.

Lemma 3.11. The planes in T∞ intersect both S0 and S∞. Equiva-
lently, the planes in T0 are disjoint from S0 ∪ S∞.
Proof. We define a relative homology class Σ ∈ H2(S

2×S2, (S0∪S∞∪
T0 ∪ T∞) by first choosing an embedded path γ : [0, 1] → S∞ with
γ(0) = T0∩S∞ and γ(1) = T∞∩S∞. Then choose a family of embedded
paths σt in p−1(γ(t)) from S∞ to S0. The union of the σt define Σ. We
may assume that γ intersects p((L) in a single point γ(t0), and, arguing
by contradiction, if T0 happened to intersect S0 then σt would intersect
L, giving a nontrivial intersection Σ • L. This contradicts Refinement
3. �

Note that there are now two foliation classes, βL and βL1,1 , deter-
mined by each of the two classes of broken leaves. The foliation F also
defines a projection map

p : S2 × S2 → S∞.

In this setting, p(L1,1) and p(L) are disjoint embedded circles in S∞,
which by Proposition 3.6 are disjoint from T0 ∪ T∞ and are homotopic
in the complement. Therefore, without loss of generality, there are
disjoint closed disks A0 ⊂ S∞ with boundary p(L) and A∞ ⊂ S∞ with
boundary p(L1,1), such that p(T0) ∈ A0 and p(T∞) ∈ A∞. Denote the
closed annulus defined by the closure of S∞ r (A0 ∪ A∞) by B.

Let (P1, P2, Q1, Q2) be coordinates in the neighborhood U(L) of L
determined by ψ, and let (p1, p2, q1, q2) be coordinates in the neighbor-
hood U(L1,1) of L1,1 determined by ψ1,1. As in Lemma 3.3, where we
had only one Lagrangian torus, we may assume that the leaves of F are
straight in both U(L) and U(L1,1). In particular, we may assume that
the unbroken leaves of F that intersect U(L) do so along the annuli
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{P1 = δ 6= 0, Q1 = θ, |P2| < ε}, the planes of T∞ intersect U(L) along
the annuli {P1 = 0, Q1 = θ, 0 < P2 < ε}, and the planes of T0 intersect
U(L) along the annuli {P1 = 0, Q1 = θ,−ε < P2 < 0}. Similarly, we
may assume that the unbroken leaves of F that intersect U(L1,1) do
so along the annuli {p1 = δ 6= 0, q1 = θ, |p2| < ε}, the planes of s∞
intersect U(L1,1) along the annuli {p1 = 0, q1 = θ, 0 < p2 < ε}, and the
planes of s0 intersect U(L1,1) along the annuli {p1 = 0, q1 = θ,−ε <
p2 < 0}.

The map p can also be described simply in these Weinstein neigh-
borhoods. In U(L), we may assume that the region {P1 < 0} ⊂ U(L)
is mapped by p into the interior of A0, and {P1 > 0} ⊂ U(L) is mapped
by p into the interior of B. Similarly, we may assume that in U(L1,1)
the region {p1 > 0} ⊂ U(L1,1) is mapped by p into the interior of A∞
and {p1 < 0} ⊂ U(L1,1) is mapped by p into the interior of B.

Using some of the freedoms available in the choice of ψ and ψ1,1, we
can add the following additional assumption.
(A2) The foliation class βL is equal to (0,−1) ∈ Hψ

1 (L;Z), and the
foliation class βL1,1 is equal to (0,−1) ∈ Hψ1,1

1 (L1,1;Z).

3.6. Stretching scenario for class (1, d), under Assumption 2.
Let Jτ , for τ ≥ 0, be the family of almost complex structures on S2×S2

used in Section 3.5 to obtain the foliation F . For a sequence τk →∞,
let uk,d : S2 → S2 × S2 be a sequence of Jτk-holomorphic curves in the
class (1, d) that converges to a holomorphic building Fd as in [1]. The
limit Fd consists of genus zero holomorphic curves in three levels. The
top level curves map to S2 × S2 r (L ∪ L1,1) and are J-holomorphic.
The middle level curves map to one of two copies of R × S∗T2, the
symplectization of the unit cotangent bundle of the flat torus. These
copies correspond to L and L1,1 and the identifications are defined
by the parameterizations ψ and ψ1,1. It follows from the definition
of the family Jτ that these middle level curves are all Jcyl-holomorphic
where Jcyl is a fixed cylindrical almost complex structure. Similarly, the
bottom level curves of the limiting building map to one of two copies
of T ∗T2 and are Jstd-holomorphic where Jstd is a standard complex
structure.

Each top level curve of Fd can be compactified to yield a map from
a surface of genus zero with boundary to (S2 × S2,L ∪ L1,1). The
components of the boundary correspond to the negative punctures of
the curve. They are mapped to the closed geodesics on L or L1,1

underlying the Reeb orbits to which the corresponding puncture is
asymptotic. The middle and bottom level curves can be compactified
to yield maps to either L or L1,1 with the same type of boundary
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conditions. These compactified maps can all be glued together to form
a map F̄d : S2 → S2 × S2 in the class (1, d).

Definition 3.12. A J-holomorphic curve u in S2 × S2 r (L ∪ L1,1) is
said to be essential (with respect to the foliation F) if the map p ◦ u is
injective.

Definition 3.13. Let u be a J-holomorphic curve in S2×S2r(L∪L1,1).
A puncture of u is said to be of foliation type with respect to L (L1,1) if
it is asymptotic to a closed Reeb orbit which lies on the copy of S∗T2

that corresponds to L (L1,1) and covers a closed geodesic in an integer
multiple of the foliation class βL (βL1,1). The puncture is of positive
(negative) foliation type if this integer is positive (negative).

Lemma 3.14. Let u be a J-holomorphic curve in S2×S2 r (L∪L1,1)
with a puncture. Let {cl} be a sequence of circles in the domain of u
which lie in a standard neighborhood of the puncture, wind once around
it, and converge to it in the Hausdorff topology. If the puncture is of
foliation type with respect to L (L1,1), then the sets p(u(cl)) converge
to a point on p(L) (p(L1,1)). Moreover each p(u(cl)) either maps into
the point (in which case u covers a plane in a broken leaf) or it winds
nontrivially around the point. If the puncture is not of foliation type
then the sets p(u(cl)) converge to p(L) (p(L1,1)).

Proof. This follows from the exponential convergence theorem from
[11]. �

Corollary 3.15. If u is an essential J-holomorphic curve in S2×S2r
(L ∪ L1,1), then its punctures on L are either all of foliation type or
none of them are, and similarly for the punctures on L1,1. If u has no
punctures of foliation type, then it is either a J-holomorphic plane or
cylinder. If u is a plane, then the closure of the image of p ◦u is A0 or
A∞ or the closure of their complements in S∞. If u is a cylinder, then
the closure of the image of p ◦ u is B.

Proof. The previous lemma implies that if u has punctures of both
foliation type and not of foliation type on L or L1,1 then p ◦ u will not
be injective. �

The following result can be proved in the same way as Lemma 6.2
in [8].

Lemma 3.16. Let u be an essential curve whose punctures on L are
all of foliation type. Then these punctures are either all positive or all
negative (see Definition 3.13). The same holds for the punctures on
L1,1.
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Let uk,d be a sequence converging to Fd as in the stretching sce-
nario for class (1, d). The fact that the curves uk,d must intersect
each leaf of F exactly once, imposes several important restrictions on
Fd in relation to the foliation F , and allows us to identify a handful of
possible limit structures.

Proposition 3.17. Let Fd be a limit as in the stretching scenario
for class (1, d). Then the building Fd is of one of the following types:

Type 0. Fd is a (possibly nodal) J-holomorphic sphere in S2 × S2 r
(L ∪ L1,1) in the class (1, d), where one (essential) sphere lies in the
class (1, j) for some 1 ≤ j ≤ d and any remaining curves are either
spheres covering unbroken leaves of the foliation, or pairs of planes
covering broken leaves of the foliation.

Type 1. Fd has a unique essential curve ud. The punctures of ud are
all of foliation type, and along L, and also L1,1, are either all positive
or all negative. The image of p◦ud is S∞ minus finitely many points on
p(L) ∪ p(L1,1). The other top level curves of Fd either cover unbroken
leaves of the foliation, or they are J-holomorphic planes covering one
of the planes of a broken leaf of the foliation.

Type 2a. Fd has exactly two essential curves, uL and u. The closures
of the images of the maps p◦uL and p◦u are A0 and B∪A∞, respectively.
Any punctures of u on L1,1 are all of foliation type and are either all
positive or all negative. The other top level curves of Fd cover (broken
or unbroken) leaves of F .

Type 2b. Fd has exactly two essential curves, u and uL1,1. The clo-
sures of the images of the maps p ◦ u and p ◦ uL1,1 are A0 ∪ B and
A∞, respectively. Any punctures of u on L are all of foliation type and
are either all positive or all negative. The other top level curves of Fd

cover (broken or unbroken) leaves of F .

Type 3. Fd has exactly three essential curves, uL, u, and uL1,1. The
closures of the images of the maps uL, u, and uL1,1 are A0, B and A∞,
respectively. The other top level curves of Fd again cover (broken or
unbroken) leaves of F .

Proof of Proposition 3.17. We begin with the following result which
allows us to use essential curves to sort the limit structures.
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Lemma 3.18. Let Fd be a limit as in the stretching scenario for
class (1, d). If u is a top level curve of Fd, then it is either essential
or else the image of p ◦ u is a point. The essential curves have disjoint
images under p, which are open sets, and these images include the
complement of p(L) ∪ p(L1,1).

Proof. Recall that the curves of Fd can be compactified and glued to-
gether to form a map F̄d : S2 → S2×S2 in the class (1, d). The intersec-
tions of F̄d with an unbroken leaf T of F all correspond to intersections
of top level curves of Fd with T . Since (1, d) • T = (1, d) • (0, 1) = 1,
there can only be one such intersection point, by positivity of inter-
section. If u is a top level curve such that the map p ◦ u is constant,
then u covers part of a broken leaf of our foliation and has intersection
number 0 with all unbroken leaves. Assume then that u is a top level
curve such that p ◦ u is nonconstant. By the discussion above, u in-
tersects any unbroken leaf T either once or not at all, and if p ◦ u has
any double points then they must lie in p(L) ∪ p(L1,1). Positivity of
intersection again implies that the nonconstant map p ◦ u is an open
mapping and this implies that the double points of p ◦ u form an open
set. We conclude that u is essential. To see that the essential curves
have disjoint images under p we can apply the same argument to a
union u ∪ v. The intersection number also implies that all unbroken
fibers intersect at least one essential curve.

�

Lemma 3.18 implies that there is an essential curve u of Fd that
intersects T0. The closure of the image of p ◦ u must contain A0. By
Corollary 3.15 the following cases are exhaustive.

Case 1: u has no punctures. In this case, p◦u must be a bijection onto
S∞. Hence, u is a J-holomorphic sphere in a class of the form (1, j)
for j in [0, d]. By Lemma 3.18 all the other top level curves of Fd must
cover leaves of the foliation.

The top level curves of Fd which cover fibres fit together to form a
possibly disconnected curve in the class (0, d − j). If j = d then Fd

consists only of the curve u. Either way, the building is of Type 0.

Case 2: u has punctures and they are all of foliation type. In this
case we claim that Fd is of Type 1. By Lemma 3.14, the image of
the map p ◦ u includes points in each component of the complement of
p(L) ∪ p(L1,1), and so by Lemma 3.18 we have that p ◦ u is a bijection
onto S∞ minus a finite set of points on p(L) ∪ p(L1,1). The other top
level curves of Fd must either cover unbroken leaves of F or they are
J-holomorphic planes covering one of the planes of a broken leaf of F .
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The statement about positivity or negativity of punctures is Lemma
3.16.

Case 3: u has one puncture not of foliation type. Since u intersects
the leaf T0, the closure of the image of p ◦ u is either A0 or A0 ∪B. In
either case, u does not intersect T∞.

Suppose that the closure of the image of p◦u is A0. By Lemma 3.18,
there is an essential curve v of Fd that intersects T∞, and the images
of p ◦ u and p ◦ v cannot intersect. Hence the closure of the image of
p ◦ v is either A∞ or B ∪ A∞. In the first case, Fd is of Type 3 with
uL = v and uL1,1 = u, where the third curve, u, exists by Lemma 3.18.
In the second case, Fd is of Type 2a with u0L = u and u∞L = v.

If, instead, the closure of the image of p ◦ u is A0 ∪B, then a similar
argument implies that Fd is of Type 2b.

This completes the proof of Proposition 3.17.

3.7. The existence of special buildings, under Assumption 2.
In this section we will establish the existence of two special limits of
the stretching scenario for class (1, d) when d is sufficiently large.
The following result will be used to exploit the large d limit.

Lemma 3.19. There exists an ε > 0 such that

area(u) ≥ εu • (S0 ∪ S∞)

for all J-holomorphic curves u in S2 × S2 r (L ∪ L1,1).

Proof. Fix an open neighborhood of S∞ of the form Nε = S∞ ×D2(ε)
where D2(ε) is the open disc of area ε. We may assume that the
closure of Nε is disjoint from L ∪ L1,1 and, by (A1), we may assume
that J restricts to Nε as the standard split complex structure. Let
π2 : S∞ ×D2(ε)→ D2(ε) be projection and set

uε,∞ = u|u−1(Nε).

By perturbing ε if needed we may assume that u−1(Nε) is a smooth
manifold. We have

degree(π2 ◦ uε,d) = u • S∞.
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This implies

area(uε,∞) ≥
∫
u−1(Nε)

u∗ε,∞(ω ⊕ ω)

≥
∫
(π2◦uε,∞)−1(D2(ε))

(π2 ◦ uε,∞)∗ω

=

(∫
D2(ε)

ω

)
u • S∞

= εu • S∞.
A similar calculation for S0 gives the result. �

Proposition 3.20. For all sufficiently large d, there exists a limiting
building F as in the stretching scenario for class (1, d) such that
F is of Type 3. The building consists of its three essential top level
curves, uL, u, and uL1,1, together with d − 1 planes in T0 ∪ T∞ and d
planes in s0 ∪ s∞.

Proof. Fix d + 1 points on L1,1 and d points on L. Let Jτ , for τ ≥ 0,
be the family of almost complex structures on S2 × S2 from Section
3.5 and for a sequence τk →∞, let uk : S2 → S2 × S2 be a convergent
sequence of Jτk-holomorphic curves in the class (1, d) that pass through
the 2d+ 1 constraint points. Their limit, F, is the desired building.

To see this we first note that the point constraints already preclude
the possibility that F is of Type 0. If F had Type 1, the point con-
straints on L1,1 would imply, by Lemma 3.16, that F must contain d+1
planes either all in s0 or all in s∞. This contradicts the fact that the our
curve has intersection number d with S0 and S∞. The same argument
precludes the possibility that F has Type 2a.

It remains to show that F does not have Type 2b. Assuming that F
has Type 2b, we will show that it must include a collection of curves of
total area equal to two, that intersect S0∪S∞ d times. If d is sufficiently
large, this contradicts Lemma 3.19 above.

Claim 1. If F has Type 2b, then it includes at least d planes in s0∪s∞.
To see this consider the subbuilding F1,1 of F consisting of its middle

and bottom level curves mapping to the copies of R× S∗T2 and T ∗T2

that correspond to L1,1. Since it is connected and has genus zero, it
follows from Proposition 3.3. of [8] that

index(F1,1) = 2(s− 1),

where s is the number of positive ends of F1,1. Since, F1,1 passes
through the d+ 1 generic point constraints on L1,1, and the Fredholm
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index in these manifolds is nondecreasing under multiple covers, we
must also have

index(F1,1) ≥ 2(d+ 1).

Hence, F1,1 has at least d+2 positive ends. Under the assumption that
F has Type 2b, two of these positive ends match with the two essential
top level curves of F. This leaves at least d positive ends of F1,1 that
match with top level curves of F that cover planes in s0 ∪ s∞.

Remark 3.21. The same argument implies that if F has Type 3 then
again it must include at least d planes in s0 ∪ s∞.

Claim 2. If F has Type 2b, then it includes d planes in T0 and none
in T∞.

By Lemma 3.16 the d constraint points on L imply that, if F is of
Type 2b, then it must contain d planes either all in T0 or all in T∞.
To show that these planes can not be in T∞, we consider intersections
with S0∪S∞. Overall, the top level curves of F must intersect S0∪S∞
exactly 2d times. The planes of F asymptotic to L1,1 from Claim 1,
account for at least d of these intersections.

Since L is homologically trivial in Y , by Lemma 3.11 each plane of
T∞ must intersect both S0 and S∞, while the planes in T0 intersect
neither of these spheres. If the d planes of F asymptotic to L are in
T∞ then they would contribute another 2d intersections with S0 ∪ S∞.
By positivity of intersection, this can not happen and so these planes
must belong to T0 as claimed.

To complete the argument, we now balance areas. The total area of
all the curves in F is 2(d+ 1). If F has Type 2b, then the planes from
Claim 1 and Claim 2 have total area at least 2d. It’s essential curves
must then have total area equal to 2. Also, they must contribute the
remaining d intersections with S0 ∪ S∞. It follows from Lemma 3.19,
that this is impossible for all d sufficiently large. Hence F can not be of
Type 2b, and must instead be of Type 3. Arguing as above, it follows
that in addition to its three essential top level curves, F must then
have d planes in s0 ∪ s∞ and d− 1 planes in T0 ∪ T∞. �

Proposition 3.22. For all sufficiently large d, there exists a limiting
building G as in the stretching scenario for class (1, d) such that G
Type 3. In addition to its three essential curves it consists of d planes
in T0 ∪ T∞ and d− 1 planes in s0 ∪ s∞.

Proof. Here we fix d points on L1,1 and d + 1 points on L, and for Jτ
as in Proposition 3.20 consider the limit, G, of a convergent sequence
of Jτk-holomorphic spheres, for τk →∞, that represent the class (1, d)
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and pass through the 2d + 1 constraint points. The point constraints
imply that G is not of Type 0.

If G was of Type 1, the point constraints would imply that G in-
cludes at least d planes in either s0 or s∞, and at least d + 1 planes
in either T0 or T∞. From this it follows that the essential curve of G
would have area 1. Recalling Lemma 3.11, since L is homologicially
trivial, the planes of T∞ each intersect S0 ∪ S∞ twice. Arguing as in
Claim 2 from the proof of Proposition 3.20, if the planes asymptotic to
L lie in T∞ then the broken planes will contribute a total of d+2(d+1)
intersections with S0 ∪ S∞, a contradiction as there are only 2d such
intersections. On the other hand, if these planes all lie in T0 then
the essential curve must contribute d intersections with S0 ∪ S∞. As
this essential curve has area 1 then contradicts Lemma 3.19 when d is
sufficiently large. Hence, G is not of Type 1.

Next we show thatG can not be of Type 2b. Assume that it is. Then
G includes d + 1 planes in either T0 or T∞. Counting intersections as
above, G must have d+ 1 planes in T0.

Arguing as in Claim 1 above, we consider the subbuilding G1,1 of G
consisting of its middle and bottom level curves that map to the copies
of R×S∗T2 and T ∗T2 that correspond to L1,1. Since G1,1 is connected
and has genus zero, we have

index(G1,1) = 2(s− 1),

where s is the number of positive ends of G1,1. Since, G1,1 passes
through the d generic point constraints on L we also have

index(G1,1) ≥ 2d.

Hence, G1,1 has at least d + 1 positive ends. Two of these positive
ends match with negative ends of the two essential curves of G1,1. It
follows that G must have at least d− 1 planes in s0 ∪ s∞. This means
the planes covering broken leaves then have area at least 2d. As the
limiting building has total area 2d + 2 and also includes two essential
curves we see that the essential curves each have area 1 and there are
exactly d − 1 planes in s0 ∪ s∞. As the planes in T0 are disjoint from
S0 ∪ S∞, the essential curves of G must have d + 1 intersections with
S0 ∪ S∞. Lemma 3.19 again implies that this is impossible for all
sufficiently large d.

Finally we show that G can not be of Type 2a. In this case G
includes d planes in T0 ∪ T∞ and d planes in either s0 or s∞. The
planes asymptotic to L1,1 thus account for all intersections with either
S0 or S∞ and so the planes asymptotic to L therefore all lie in T0. The
essential curves have total area 2 and must together account for all
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intersections with either S0 or S∞. This contradicts Lemma 3.19 as
before. �

Lemma 3.23. All curves in the limiting buildings F and G that map
to S2×S2r(L∪L1,1) have area 1, and in particular are simply covered.

Proof. To see this, note that since F is of Type 3, it has its three
essential curves together with 2d− 1 other top level curves that cover
leaves of the foliation. Since F has total area 2d+ 2 and monotonicity
implies that all curves have integral area, the result for F follows.

The same argument applies to G. �

3.8. A collection of symplectic spheres and disks, under As-
sumption 2. Consider (S2×S2, π∗1ω+ π∗2ω) equipped with an almost
complex structure J adapted to parameterizations ψ and ψ1,1 of L and
L1,1, respectively. Recall that for the projection p : S2× S2 → S∞, de-
fined by the foliation F corresponding to J , the images p(L) and p(L1,1)
are disjoint circles. There are also disjoint disks A0 ⊂ S∞ with bound-
ary p(L) and A∞ ⊂ S∞ with boundary p(L1,1) such that p(T0) ∈ A0

and p(T∞) ∈ A∞. In this section we will prove the following result.

Proposition 3.24. There exist embedded symplectic spheres F,G : S2 →
S2×S2 in the class (1, d), and embedded symplectic disks E : (D2, S1)→
(S2 × S2,L) and E1,1 : (D2, S1) → (S2 × S2, L1,1) of Maslov index 2,
such that:

(1) F , G, E and E1,1 are all J-holomorphic away from arbitrarily
small neighborhoods of a collection of Lagranian tori whose el-
ements are near to, and Lagrangian isotopic to, either L or L1,1;

(2) the class of E|S1 and the foliation class βL form an integral ba-
sis of H1(L : Z);

(3) the class of E1,1|S1 and the foliation class βL1,1 form an integral
basis of H1(L1,1 : Z);

(4) exactly one of F and G intersects the planes of T0 and the other
intersects the planes of T∞;

(5) exactly one of F and G intersects the planes of s0 and the other
intersects the planes of s∞;

(6) F • E +G • E = d;
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(7) F • E1,1 +G • E1,1 = d;

(8) F •G = 2d;

(9) p(F ∩G) consists of d points in A0 and d points in A∞.

Proof of Proposition 3.24. To prove this result we will compactify
and deform curves of the buildings F and G from Propositions 3.20
and 3.22. There are two deformation processes which are used in order
to resolve the intersection patterns of the resulting maps. The fact
that the foliation F is assumed to be straightened near L and L1,1 (see
Section 3.5) plays a prominent role here. In particular, curves through
U(L) and U(L1,1) are deformed so that many of their intersections can
be identified with intersections between cylinders in the local models.

3.8.1. Deformations near L. We begin by describing two deformation
processes for curves with ends on L. These appear as Lemma 3.26 and
Corollary 3.28, below.

Consider the coordinates (P1, Q1, P2, Q2) in our Weinstein neighbor-
hood

U(L) = {|P1| < ε, |P2| < ε}.
For each translation vector v = (a, b) ∈ (−ε, ε)2, there is a correspond-
ing nearby Lagrangian torus

L(v) = L(a, b) = {P1 = a, P2 = b} ⊂ U(L).

Note that the parameterization ψ of L determines an obvious parame-
terization, ψ(v) = ψ(a, b) of L(a, b), and a canonical isomorphism from
Hψ

1 (L;Z) to Hψ(a,b)
1 (L(a, b);Z).

Following [6] section 4, given a finite collection of translation vectors,

V = {v1, . . . ,vk} = {(a1, b1), . . . , (ak, bk)},
let JV be an almost complex structure which coincides with J outside
U(L) and inside has the form

(1) JV
∂

∂Qi

= −ρV
∂

∂Pi
,

where ρV is a positive function away from the collection of Lagrangians

L(V) = ∪ki=1L(vi),

and in a neighborhood of each L(vi) has the form

ρV =
√

(P1 − ai)2 + (P2 − bi)2.
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In this case, we say that JV is stretched along L(V). The set of all
such almost complex structures will be denoted by JU(L).

Using the induced parameterizations ψ(vi) of each of the L(vi), the
almost complex structure JV defines a family of almost complex struc-
tures JV,τ on S2 × S2 which allow us to stretch J holomorphic curves
in S2 × S2 along L(V) ∪ L1,1. The limit of the Gromov foliations for
the JV,τ , in class (0, 1), yield a foliation F(V) of

S2 × S2 r (L(V) ∪ L1,1).

For example, for V = {(0, 0)} we have JV = J and F(V) = F .

Lemma 3.25. Leaves of the foliation F(V) intersect Uε(L) along the
annuli {P1 = δ,Q1 = θ, |P2| < ε}. A leaf of F(V) that intersects Uε(L)
along the annulus {P1 = δ,Q1 = θ, |P2| < ε} is broken if and only if
the collection V contains an element of the form (δ, bi).

Proof. It follows from (1) that these annuli are JV-holomorphic. By
assuming J satisfies the conclusions of Lemma 3.3, they also extend to
JV-holomorphic spheres in the class (0, 1). By positivity of intersection,
these spheres, and indeed any holomorphic sphere in the class (0, 1),
are leaves of the foliation F(V). �

Our first deformation process allows us to deform a regular curve so
that its ends on L become ends on a nearby translated Lagrangian.

Lemma 3.26. (Fukaya’s Trick) Let u be a regular J-holomorphic curve
with k ≥ 0 ends on L and l ≥ 0 ends on L1,1. For all v = (a, b) with
‖v‖2 = a2+b2 sufficiently small there is a regular Jv-holomorphic curve
u(v) with k ends on L(v) and l ends on L1,1. Moreover the ends of
u(v) on L(v) represent the identical classes in Hψ(v)

1 (L,R) as do those
of u in Hψ

1 (L,R). The classes corresponding to the ends of u(v) on
L1,1 are also identical to those of u.

Proof. For ‖v‖ sufficiently small, the Lagrangian isotopy t 7→ L(tv) for
0 ≤ t ≤ 1 is contained in U(L). Let ft,v be a family of diffeomorphisms
of S2 × S2 such that:

• f0,v is the identity map,
• ft,v(L) = L(tv) for all t ∈ [0, 1],
• each ft,v is equal to the identity map outside of U(L),
• ‖ft,v‖C1 is of order 1 in ‖v‖.

As above, the parameterization ψ of L determines a parameterization
ψ(tv) for each L(tv). Let Jtv be a family of tame almost structures
in JU(L) such that each Jtv is adapted to ψ(tv). In particular, Jtv is
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stretched along L(tv). Set

J̃tv = (f−1t,v )∗Jtv.

For ‖v‖ sufficiently small, J̃tv is a tame almost complex structure on
S2 × S2 r L ∪ L1,1 for all t ∈ [0, 1]. Since u is regular, for sufficiently
small ‖v‖ the curve u persists to yield a regular J̃v-holomorphic curve
ũ(v) with the same asymptotic behavior as u. By our choice of J̃tv,

u(v) = f1,v ◦ ũ(v)

is then a regular Jv-holomorphic curve with k ends on L(v) instead of
L.

�

By Lemma 3.23, one can apply Lemma 3.26 to all the top level
curves curves of the buildings F and G from Proposition 3.20 and
Proposition 3.22, to obtain new buildings F(v) and G(v). Indeed,
Lemma 3.23 implies that the top level curves are somewhere injective
(and are actually embedded as they are limits of embedded curves) so
for a generic choice of J they are regular. Applying Theorem 1 from
[21], we even have the stronger statement that our curves are regular
for all J .

For example, suppose that the top level curves of F are

{uL, u, uL1,1 , u1, . . . , ud−1, u1, . . . , ud},
where the ui belong to T0 ∪ T∞ and the uj belong to s0 ∪ s∞. Then
for v = (a, b) with ‖v‖ sufficiently small we can define the deformed
building F(v) to be the one whose top level curves are

{uL(v), u(v), uL1,1 , u1(v), . . . , ud−1(v), u1, . . . , ud}
and whose middle and bottom level curves are the same as those of F
but are now considered to map to copies of R × S∗T2 and T ∗T2 that
correspond to L(v) rather than L. Note that F(v) still has a continuous
compactification F̄(v) : S2 → S2×S2 which can be deformed arbitrarily
close to L(v) to obtain a smooth symplectic sphere F = F (v) : S2 →
S2 × S2 which is J-holomorphic away from a small neighborhood of
L(v).

Our second deformation process changes the essential J-holomorphic
curve uL of F into one which is pseudo-holomorphic with respect to
an almost-complex structure that is stretched along additional nearby
Lagrangian tori.

Lemma 3.27. For b 6= 0, set V = {(0, 0), (0, b)}. Let Js, for s ∈
[0, 1], be a smooth family of almost complex structures in JU(L) that



PACKING LAGRANGIAN TORI 25

connects J to JV in a manner that manifests the stretching of J along
L((0, b)). The essential curve uL of F belongs to a smooth family of
Js-holomorphic planes uL(s) for s ∈ [0, 1].

Proof. By Lemma 3.23, the initial curve uL has area equal to 1. Since L
is monotone, no degenerations are possible until s = 1. In other words,
the family of deformed curves uL(s) exists for all s ∈ [0, 1) and it suffices
to show that it extends to s = 1. Arguing by contradiction, assume
that there is a sequence sj → 1 such that the curves uL(sj) converge
to a nontrivial JV-holomorphic building H which includes curves with
punctures asymptotic to L(v) with v = (0, b). We will show that
this implies that, unlike uL, none of the curves of H intersect T0, a
contradiction.

Claim 1. Let v be a JV-holomorphic curve of H. Any puncture of
v asymptotic to L(v) must cover a closed geodesic in a class (k, l) ∈
H1(L(v);Z) with k ≤ 0.

Proof. Since the closure of p ◦ uL is A0, uL is disjoint from the leaves
of F which intersect U(L) in the region {P1 > 0}. The same is true
of the curves uL(s) for all s < 1. Hence, v must also be disjoint from
these leaves. The curve v can be extended smoothly to the oriented
blow-up of the relevant puncture, such that the resulting map v̄ acts
on the corresponding boundary circle as

θ 7→ (0, b, Q1 + kθ,Q2 + lθ)

for some Q1, Q2 ∈ S1. The tangent space to the image of v̄ at a
boundary point on the circle is spanned by {k ∂

∂Q1
+ l ∂

∂Q2
, k ∂

∂P1
+ l ∂

∂P2
}.

If k were positive, this would contradict the fact that v is disjoint from
the leaves through {P1 > 0} since v = (0, b). �

Claim 2. Let v be a JV-holomorphic curve with a puncture that is
asymptotic to L(v) along a geodesic in a class which is a multiple of
the foliation class, i.e. of the form (0, l) ∈ Hψ(v)

1 (L(v);Z). Then v must
cover a plane or cylinder of a twice broken leaf of the foliation F(V).

Proof. This follows from the asymptotic properties of holomorphic curves
and the fact that v lies in {P1 ≤ 0}, as in Lemma 6.2 of [8]. �

We can now complete the proof of Lemma 3.27. Let Htop denote
the collection of top level curves of H, let H1,1 be the subbuilding
consisting of the middle and bottom level curves of H that map to the
copies of R× S∗T2 and T ∗T2 corresponding to L1,1, and let Hv be the
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subbuilding consisting of the middle and bottom level curves of H that
map to the copies of R× S∗T2 and T ∗T2 corresponding to L(v).

Now consider the classes (k1, l1), . . . , (km, lm) ∈ H1(L(v);Z) of the
geodesics determined by all of the punctures of top level curves of H
that are asymptotic to L(v). These constitute the boundary of the
cycle in L(v) that is obtained by gluing together the compactifications
of the curves of Hv. Hence, the sum of the classes (k1, l1), . . . , (km, lm)
must be (0, 0) and, by Claim 1, each ki must be zero. It then follows
from Claim 2, that any curve of H with an end on L(v) must cover a
plane or cylinder of a broken leaf of F(v).

Now partition the curves of Htop ∪Hv = H r H1,1 into connected
components based on the matching of their ends in the copies of R ×
S∗T2 and T ∗T2 corresponding to L(v). Denote these components by
H1, . . . ,Hk. The compactification of each Hj is a cycle representing a
class in π2(S2× S2, L1,1). By monotonicity, the symplectic area of this
cycle is a positive integer. Since the area of uL is one, we must have
k = 1 and the area of the cycle determined by H1 must be one. By
our assumption, H1 must contain a curve with an end on L(v). By the
discussion above, this implies that all the curves of H1 must cover a
plane or cylinder of a broken leaf of F(V) through L(v). None of these
leaves intersect T0 , and neither do the curves of H1,1. Hence, no curve
of H = H1 ∪H1,1 intersects T0, which is the desired contradiction. �

The JV-holomorphic curve uL(1) is disjoint from the region {P1 >
0}. By positivity of intersection, since it does not cover a leaf of the
foliation, uL(1) is disjoint from the hypersurface {P1 = 0}. The closure
of p◦uL(1) is equal to A0 and uL(1) intersects the leaves of F(V), that
pass through the annuli {P1 = c < 0, Q1 = θ}, exactly once. Arguing
as above, one sees that the statement of Lemma 3.27 also holds for

V = ((0, 0), (0, b1), (0, b2)),

for any nonzero b1, b2 in (−ε, ε).
Translating these Lagrangian tori slightly in the P1-direction, we

then get the following, more general, version of our second deformation
process.

Corollary 3.28. Let uL be the essential curve of F which is mapped
by p onto A0. Choose nonzero constants b1, b2 in (−ε, ε). If δ > 0 is
sufficiently small, then for any a1, a2 in (−δ, δ) and

V = {(0, 0), (a1, b1), (a2, b2)}
there is a JV-holomorphic curve

uVL : C→ S2 × S2 r (L(V) ∪ L1,1)
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in the class of uL such that uVL is disjoint from the region {P1 > 0},
the closure of the image of p ◦ uVL is A0, and uVL intersects the leaves
of F(V), that pass through the annuli {P1 = c < 0, Q1 = θ}, exactly
once.

3.8.2. Intersections near L. We now use the deformation tools of Lemma
3.26 and Corollary 3.28 to resolve some intersection patterns. Let F
be a building of Type 3 as in Proposition 3.20 and consider translation
data

V = {0,v1,v2} = {(0, 0), (a1, b1), (a2, b2)}.
In what follows we will always assume that v1 and v2 are distinct and
nontrivial. The collection of top level curves of F is of the form

{uL, u, uL1,1 , u1, . . . , ud−1, u1, . . . , ud},
where the u1, . . . , uα0 belong to T0, uα0+1, . . . , ud−1 belong to T∞, and
the uj belong to s0∪ s∞. If ‖v1‖ is sufficiently small then, as described
in Remark ??, the deformed building F(v1) is well-defined and its top
level curves are

{uL(v1), u(v1), uL1,1 , u1(v1), . . . , ud−1(v1), u1, . . . , ud}.
Choosing a1 to be smaller still, if necessary, we may assume that Corol-
lary 3.28 holds for V for |a2| sufficiently small. This yields a JV-
holomorphic curve uVL which is disjoint from the region {P1 > 0} and
intersects the leaves of F(V), that pass through the planes {P1 = c <
0, Q1 = θ}, exactly once.

The intersection number between each top level curve of F(v1) and
the curve uVL is well defined since, as v1 6= 0, they are asymptotic to
disjoint Lagrangian tori. Moreover all these intersections are positive.
We denote the total of these intersection numbers by F(v1)•uVL . Simi-
larly, the intersection number of each top level curve of F(v1) with any
of the planes in either T0 or T∞ is well-defined and all such intersections
are positive. Since this number is the same for any plane in the family,
we denote these numbers by F(v1) • T0 and F(v1) • T∞, respectively.

Let F̄(v1) : S2 → S2 × S2 be the compactification of F(v1), let
E : (D2, S1) → (S2 × S2,L) be the compactification of the curve uVL ,
and let T̄0 and T̄∞ be the solid tori obtained by compactifying the
planes of T0 and T∞. Deforming F̄(v1) arbitrarily close to L(v1), we
obtain a smooth map F = F (v1) : S2 → S2 × S2 such that

(2) F • E = F̄(v1) • E = F(v1) • uVL
and

(3) F • T̄∗ = F̄(v1) • T̄∗ = F(v1) • T∗, for ∗ = 0,∞.
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Moreover, the corresponding intersection points are identical.

Lemma 3.29. Consider V = {0,v1,v2} = {(0, 0), (a1, b1), (a2, b2)}
such that v1 and v2 are distinct, a1 is negative, and b1 and b2 are
nonzero. Suppose that |a1| is sufficiently small with respect to |b1|.

If b1 > 0, then F • T̄0 = 0, F • T̄∞ = 1, and F • E = α0.

If b1 < 0, then F • T̄0 = 1, F • T̄∞ = 0, and F • E = d− 1− α0.

Proof. Here we give the proof of the case when b1 is positive. The proof
for b1 < 0 is identical and is left to the reader. The map F represents
the class (1, d). For each disk in T̄0 there is a companion disc in T̄∞
such that the pair can be glued together, along L, to form a sphere in
the class (0, 1). Hence,

F • T̄0 + F • T̄∞ = 1.

Since all intersections are positive, in order to prove that F • T̄0 = 0,
and F • T̄∞ = 1, it suffices to prove that F • T̄∞ ≥ 1. In particular, in
view of 3.8.2, it suffices to show that u(v1) • T∞ ≥ 1.

The planes of T∞ intersect U(L) in annuli of the form {P1 = 0, Q1 =
θ, P2 > 0}. The curve u(v1) intersects U(L) in the region {P1 > a1}.
Since it is essential, u(v1) must intersect every cylinder of the form
{P1 = a,Q1 = θ} with a > a1. The curve u(v1) also has an end
asymptotic to a circle in the torus L(v1) = {P1 = a1, P2 = b1}. Since
b1 is positive, it follows that for all a sufficiently close to a1, u(v1)
will intersect the annuli {P1 = a,Q1 = θ, P2 > 0}. Hence, if |a1|
is sufficiently small with respect to b1, then u(v1) must intersect the
planes of T∞ at least once, as desired.

It remains to prove that F • E = α0 when |a1| is sufficiently small
with respect to |b1|. By (2), and the fact that the top level curves of
F(v1) are

{uL(v1), u(v1), uL1,1 , u1(v1), . . . , ud−1(v1), u1, . . . , ud},
is suffices to prove that for |a1| sufficiently small with respect to |b1|,
we have
(4) ui(v1) • uVL = 1 for 1 ≤ i ≤ α0,

and uVL is disjoint from all the other top level curves of F(v1).
Recall that uVL is an essential curve, and that the image of p ◦ uVL is

A0. So if w is another curve in S2 × S2 and p ◦ w is disjoint from A0,
then uVL is disjoint from w. This observation implies that uVL is disjoint
from uL1,1 and the uj for j = 1, . . . , d since theses curves all project
into A∞.



PACKING LAGRANGIAN TORI 29

Another consequence of uVL being essential with respect to F , is that
it intersects any fiber of F either once or not at all. The curve uVL
intersects U(L) in the region {P1 < 0} and has an end asymptotic
to a circle in L = {P1 = P2 = 0}. Since b1 > 0, this implies that
for all a1 < 0 such that |a1| is sufficiently small with respect to b1,
uVL must intersect the annuli of the form {P1 = a1, Q1 = θ, P2 < b1}
exactly once. Now the planes ui(v1) all belong to broken fibers of F
that intersect U(L). For 1 ≤ i ≤ α0, the curves ui(v1) intersect U(L)
in annuli of the form {P1 = a1, Q1 = θ, P2 < b1}. For i > α0, the
ui(v1) intersect U(L) in annuli of the form {P1 = a1, Q1 = θ, P2 > b1}.
Hence, for 1 ≤ i ≤ α0, uVL intersects the fiber of F containing ui(v1)
at a point on ui(v1). This yields equation (4). On the other hand, for
i > α0, uVL intersects the fiber of F containing ui(v1) at a point in the
complement of ui(v1). Hence, uVL is disjoint from these curves.

Next we show that, when |a1| is sufficiently small with respect to
|b1|, uVL is disjoint from u(v1). Considering projections, it is clear that
the part of u(v1) in the complement of U(L) is disjoint from uVL since
its projection is contained in the interior of B ∪ A∞.

Suppose that a1 = 0. Then u((0, b1))∩U(L) is contained in {P1 > 0}
and is asymptotic to L(0, b1). This is disjoint from uVL ∩U(L) which is
contained in {P1 < 0} and is asymptotic to L = L(0, 0). By continuity,
u((a1, b1)) ∩ U(L) is then disjoint from uVL ∩ U(L) for all a1 < 0 with
|a1| sufficiently small with respect to |b1|.

Lastly, we must prove that

uL(v1) • uVL = 0.

when |a1| is sufficiently small with respect to |b1|. Since the compact-
ifications of uVL and uL are homotopic in the space of smooth maps
(D2, S1)→ (S2 × S2,L), it suffices to show that

uL(v1) • uL = 0.

Let ūL(v1) and ūL be compactifications of uL(v1) and uL. We claim
that uL(v1) • uL = 0 is equivalent to the fact that the Maslov index of
ūL is equal to 2. To see this we recall that

(5) µ(ūL) = 2c1(ūL)

where c1(ūL) is the relative Chern number of ūL which is equal to the
number of zeros of a generic section ξ of ū∗L(Λ2(T (S2×S2))) such that
ξ|S1 is nonvanishing and is tangent to Λ2(TL).

Let ν(ūL) be the normal bundle to the embedding ūL and fix an
identification of ū∗L(T (S2×S2)) with the Whitney sum ν(ūL)⊕T (D2).
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For polar coordinates (r, θ) on D2 consider the section r ∂
∂θ

of ū∗L(T (S2×
S2)). The restriction r ∂

∂θ
|S1 is nonvanishing and tangent to TL.

Replacing v1 by tv1 for some small t > 0, if necessary, we may assume
that ūL(v1) is close enough ūL, in the C1-topology, to be identified with
a section, σL(v1), of ν(ūL) ⊂ ū∗L(T (S2×S2)). The restriction σL(v1)|S1

is roughly parallel to the vector field ∂
∂P2

. By rotating in the normal
bundle this section is homotopic through nonvanishing sections to a
section of TL along ∂D2 which is orthogonal to ∂

∂θ
.

Set ξ = r ∂
∂θ
∧ σL(v1). It follows from the discussion above that ξ|S1

is nonvanishing and is tangent to Λ2(TL). Moreover, the zeroes of ξ
corresponds to the union of the zeros of r ∂

∂θ
and σL(v1). Since ūL is an

embedded the zeros of σL(v1) exactly correspond to the intersections
uL(v1) • uL. By (5), we then have

µ(ūL) = 2(1 + uL(v1) • uL).

As µ(ūL) = 2 (as it has area 1 by Lemma 3.23, and L is monotone) we
have uL(v1) • uL = 0, and are done. �

We can deform a building G as in Proposition 3.22 within this same
framework. As G is of Type 3, it’s collection of top level curves looks
like

{vL, v, vL1,1 , v1, . . . , vd, v1, . . . , vd−1},
where v1, . . . , vγ0 belong to T0, vγ0+1, . . . , vd belong to T∞ and vj belong
to s0 ∪ s∞. Assuming that v2 = (a2, b2) is sufficiently small we can
deform G to obtain a new building G(v2) with top level curves

{vL(v2), v(v2), uL1,1 , v1(v2), . . . , vd(v2), v1, . . . , vd−1}.

Let Ḡ(v2) : S2 → S2 × S2 be the compactification of G(v2). Again
we can deform Ḡ(v2), arbitrarily close to L(v2), to get a smooth map
G = G(v2) : S2 → S2 × S2 such that

G • E = Ḡ(v2) • E = G(v2) • uVL
and

G • T̄∗ = Ḡ(v2) • T̄∗ = G(v2) • T∗, for ∗ = 0,∞.
Arguing as in the proof of Lemma 3.29 we get the following.

Lemma 3.30. Consider V = {0,v1,v2} = {(0, 0), (a1, b1), (a2, b2)}
such that a2 is negative, and b1 and b2 are nonzero. Suppose that |a2|
is sufficiently small with respect to |b2|.

If b2 > 0, then
G • E = γ0 + vL(v2) • uVL ,



PACKING LAGRANGIAN TORI 31

G • T̄0 = 0, and G • T̄∞ = 1.

If b2 < 0, then
G • E = d− γ0 + vL(v2) • uVL ,

G • T̄0 = 1, and G • T̄∞ = 0.

The term vL(v2) • uVL is not necessarily equal to zero. Instead we
have the following identity.

Lemma 3.31. For V = {0,v1,v2} = {(0, 0), (a1, b1), (a2, b2)} where
b1 and b2 have opposite sign, and a1 and a2 sufficiently small relative
to b1 and b2 we have

vL(v2) • uVL = vL(v2) • uL(v1).

Proof. First we consider the case when a1 = a2 = 0. The image of
the map vL(v2) projects to A0 and its boundary lies in L(v2). Hence,
using our assumption on sign, the family of Lagrangians L(tv1)) for
0 ≤ t ≤ 1 are disjoint from the compactification of vL(v2). It then
follows from the proof of Lemma 3.26, that the compactification of uL
is connected to that of uL(v1) by a path of smooth maps ut : (D2, S1)→
(S2 × S2,L(tv1)). Therefore we have

vL(v2) • uL = vL(v2) • uL(v1),

as required.
For the general case we use the fact that the maps vary continuously

with the parameters and so the intersection numbers remain unchanged
for a1 and a2 sufficiently small.

�

Since v1 and v2 are distinct, the intersection numbers of some of the
top level curves of F(v1) and G(v2) are well-defined. The following
results concerning these intersections, will be useful.

Lemma 3.32. For v1 = (a1, b1) and v2 = (a2, b2), suppose that a1 <
a2 < 0, |a1| is sufficiently small with repsect to |b1|, and |a2| is suffi-
ciently small with repsect to |b2|.

If b1 > b2, then

ui(v1) • vL(v2) = 1 for i = 1, . . . , α0

and
vi(v2) • u(v1) = 1 for i = γ0 + 1, . . . , d.

If b1 < b2, then

ui(v1) • vL(v2) = 1 for i = α0 + 1, . . . , d− 1
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and
vi(v2) • u(v1) = 1 for i = 1, . . . , γ0.

Moreover, all the intersection points here project to A0.

Proof. Since the curves u(v1) and vL(v2) are essential with respect to
F , they intersect a leaf of the foliation either once or not at all. Hence
it suffices to detect a single intersection of the relevant pairs of curves
listed. We detect an intersection for the first type of pair above and
leave the other cases to the reader. For 1 ≤ i ≤ α0 the planes ui(v1)
intersect U(L) in annuli {P1 = a1, Q1 = θ, P2 < b1}. As vL((0, b2)) is as-
ymptotic to L((0, b2)) = {P1 = 0, P2 = b2} it intersects ui(v1) provided
a1 is sufficiently small (since the boundary of vL((0, b2)) intersects all
annuli {P1 = 0, Q1 = θ, P2 < b1}). For a2 sufficiently small, the plane
vL(v2) is a deformation of vL((0, b2)) and so the intersection persists.
As vL(v2) intersects fibers at most once, the intersection number is
equal to 1. Since a1 < 0, the intersection point projects to A0. �

Corollary 3.33. For v1 = (a1, b1) and v2 = (a2, b2), suppose that
a1 < a2 < 0, |a1| is sufficiently small with repsect to |b1|, and |a2| is
sufficiently small with repsect to |b2|.

If b1 > b2, then F ∩G contains at least α0 + d− γ0 points in U(L) that
project to A0.
If b1 < b2, then F ∩G contains at least d− 1− α0 + γ0 points in U(L)
that project to A0.

Remark 3.34. It follows from Lemma 3.31 that any excess intersection
points between F and G in U(L) are in bijection with intersection
points between G and E, at least if the bi have opposite sign and the
ai are sufficiently small.

3.8.3. Adding deformations near L1,1. To completely resolve the inter-
sections of F and G we must also apply deformations in the Weinstein
neighborhood

U(L1,1) = {|p1| < ε, |p2| < ε}.
Here we consider nearby Lagrangian tori of the form

L1,1(w) := {p1 = c, p2 = d},

for w = (c, d) ∈ (−ε, ε) × (−ε, ε). The space of almost complex struc-
tures JU(L1,1) is defined following the definition of JU(L).

Given collections

V = {v1, . . . ,vk} = {(a1, b1), . . . , (ak, bk)},
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and
W = {w1, . . . ,wl} = {(c1, d1), . . . , (cl, dl)}

set X = {V,W}. Denote the corresponding almost-complex structure
in JU(L) ∩ JU(L1,1) by JX.

Lemma 3.26 generalizes to this setting as follows.

Lemma 3.35. Let u be a regular J-holomorphic curve with k ≥ 0 ends
on L and l ≥ 0 ends on L1,1. For all x = {v,w} = {(a, b), (c, d)}
with ‖x‖ sufficiently small, there is a Jx-holomorphic curve u(x) that
represents the class in π2(S2 × S2,L(v) ∪ L1,1(w)) that corresponds to
the class [u] ∈ π2(S2×S2,L∪L1,1) under the obvious identification. The
curve u(x) has k ends on L(v) and these represent the identical classes
in Hψ(v)

1 (L;Z) as do those of u in Hψ
1 (L;Z). The curve also has l ends

on L1,1(w) which represent the identical classes in Hψ1,1(w)
1 (L1,1;Z) as

do those of u in Hψ1,1

1 (L1,1;Z).

Corollary 3.28 generalizes as follows.

Lemma 3.36. Let uL and uL1,1 be the essential curves of a building F
as in Proposition 3.20. Let X = {V,W} where

V = {(0, 0), (a1, b1), (a2, b2)}

and
W = {(0, 0), (c1, d1), (c2, d2)}.

If b1, b2, d1, d2 are in (−ε, ε) and a1, a2, c1, c2 are in (−δ, δ), then for all
sufficiently small δ there is a JX-holomorphic curve

uXL : C→ S2 × S2 r (L(V) ∪ L1,1(W))

in the class of uL such that uXL is disjoint from the region {P1 > 0},
the closure of the image of p ◦ uXL is A0, and uXL intersects the leaves
of F(X), that pass through the planes {P1 = c < 0, Q1 = θ}, exactly
once.

There is also a JX-holomorphic curve

uXL1,1
: C→ S2 × S2 r (L(V) ∪ L1,1(W))

in the class of uL1,1 such that uXL1,1
is disjoint from the region {p1 < 0},

the closure of the image of p ◦ uXL1,1
is A∞, and uXL1,1

intersects the
leaves of F(X), that pass through the planes {p1 = c > 0, q1 = θ},
exactly once.
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3.8.4. Completion of the proof of Proposition 3.24. Let F be a building
as in Proposition 3.20 and let G be a building as in Proposition 3.22.
Set

x1 = {v1,w1} = {(a1, b1), (c1, d1)},
x2 = {v2,w2} = {(a2, b2), (c2, d2)},

V = {0,v1,v2} = {(0, 0), (a1, b1), (a2, b2)},
W = {0,w1,w2} = {(0, 0), (c1, d1), (c2, d2)},

and
X = {V,W}.

We assume that ‖x1‖ and ‖x2‖ are small enough for Lemma 3.35 to
yield the deformed buildings F(x1) and G(x2). We also assume that
|a1|2 + |a2|2 + |c1|2 + |c2|2 is small enough with respect to |b1|2 + |b2|2 +
|d1|2 + |d2|2 for Lemma 3.36 to yield the deformations uXL and uXL1,1

.
Let E : (D2, S1) → (S2 × S2,L) be the compactifiction of uXL , and

E1,1 : (D2, S1) → (S2 × S2, L1,1) be the compactifiction of uXL1,1
. Since

the homology classes represented by the ends of uXL and uXL1,1
are iden-

tical to those of the essential curves uL and uL1,1 , the maps E and E1,1

satisfy conditions (2) and (3) of Proposition 3.24.
Consider compactifications F̄(x1) : S2 → S2 × S2 of F(x1), and

Ḡ(x2) : S2 → S2 × S2 of G(x2). Arguing as before, we can perturb
these maps, arbitrarily close to the Lagrangians L(v1), L1,1(w1), L(v2),
and L1,1(w2), to obtain smooth spheres F and G such that condition
(1) of Proposition 3.24 holds.

It remains to verify the conditions (4) through (9) of Proposition
3.24 that involve intersections.

In the current setting, Lemma 3.29 holds as stated and the proof is
unchanged.

Lemma 3.37. Suppose a1 is negative, and b1 and b2 are nonzero. Sup-
pose that |a1| is sufficiently small with respect to |b1|.

If b1 > 0, then F • T̄0 = 0, F • T̄∞ = 1, and F • E = α0.

If b1 < 0, then F • T̄0 = 1, F • T̄∞ = 0, and F • E = d− 1− α0.

Lemmas 3.30 and 3.31 and Corollary 3.33 change only in notation
and yield the following.

Lemma 3.38. Suppose that a2 is negative, b1 and b2 are nonzero, and
|a2| is sufficiently small with respect to |b2|.



PACKING LAGRANGIAN TORI 35

If b2 > 0, then G • T̄0 = 0, G • T̄∞ = 1, and

G • E = γ0 + vL(x2) • uXL .
If b2 < 0, then G • T̄0 = 1, and G • T̄∞ = 0, and

G • E = d− γ0 + vL(x2) • uXL .

Lemma 3.39. If b1 and b2 have opposite sign, and a1 and a2 are suf-
ficiently small, then

vL(x2) • uXL = vL(x2) • uL(x1).

Lemma 3.40. Suppose that a1 < a2 < 0, |a1| is sufficiently small with
respect to |b1|, and |a2| is sufficiently small with respect to |b2|.

If b1 > b2, then F ∩G contains at least α0 + d− γ0 points in U(L) that
project to A0.

If b1 < b2, then F ∩G ∩ U(L) contains at least d− 1− α0 + γ0 points
in U(L) that project to A0.

The following analogous results follow from similar arguments.

Lemma 3.41. Suppose c1 is positive, d1 and d2 are nonzero, and |c1|
is sufficiently small with respect to |d1|.

If d1 > 0, then F • s̄0 = 0, F • s̄∞ = 1, and F • E1,1 = β0.

If d1 < 0, then F • s̄0 = 1, and F • s̄∞ = 0, and F • E1,1 = d− β0.

Lemma 3.42. Suppose c2 is positive, d1 and d2 are nonzero, and |c2|
is sufficiently small with respect to |d2|.

If d2 > 0, then G • s̄0 = 0, G • s̄∞ = 1 and

G • E1,1 = δ0 + vL1,1(x2) • uXL1,1
.

If d2 < 0, then G • s̄0 = 1, G • s̄∞ = 0 and

G • E1,1 = d− 1− δ0 + vL1,1(x2) • uXL1,1
.

Lemma 3.43. If d1 and d2 have opposite sign, and c1 and c2 are suf-
ficiently small, then

vL1,1(x2) • uXL1,1
= vL1,1(x2) • uL1,1(x1).

Lemma 3.44. Suppose that c1 > c2 > 0, |c1| is sufficiently small with
respect to |d1|, and |c2| is sufficiently small with respect to |d2|.
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If d1 > d2, then F ∩G contains at least β0 +d−1−δ0 points in U(L1,1)
that project to A∞.

If d1 < d2, then F ∩ G contains at least d − β0 + δ0 points in U(L1,1)
that project to A∞.

With F and G fixed as above, the remaining analysis can be orga-
nized using the following two alternatives.

Alternative 1: either α0 ≥ γ0 or γ0 ≥ α0 + 1.

Alternative 2: either β0 ≥ δ0 + 1 or δ0 ≥ β0.

Case 1. α0 ≥ γ0 and β0 ≥ δ0 + 1.

In this case, we choose our translations so that

a1 < a2 < 0, b2 < 0 < b1, 0 < c2 < c1, and d2 < 0 < d1.

For these conditions on b1 and b2, Lemmas 3.37 and 3.38 yield F •
T0 = 0, F • T∞ = 1 G • T0 = 1, and G • T∞ = 0. This implies condition
(4) of Proposition 3.24.

Similarly, for these conditions on d1 and d2, Lemmas 3.41 and 3.42
imply that F • s0 = 1, F • s∞ = 0, G • s0 = 1, and G • s0 = 1. This
gives condition (5) of Proposition 3.24.

Since the maps F and G both represent the class (1, d) in H2(S
2 ×

S2;Z)) we have F •G = (1, d) • (1, d) = 2d. On the other hand, for the
choices above, Lemmas 3.40 and 3.44 imply that

F •G ≥ (α0 + d− γ0) + (β0 + d− 1− δ0).

In the current case, with α0 ≥ γ0 and β0 ≥ δ0 +1, these two summands
are each at least d, and so must we have

(6) α0 = γ0,

and

(7) β0 = 1 + δ0.

It follows that F ∩ G consists of exactly 2d points, d of which are
contained in U(L) and project to A0 and d of which are contained
in U(L1,1) and project to A∞. This yields conditions (8) and (9) of
Proposition 3.24.

Since F • G = F(x1) • G(x2), it follows from the equalities above
that there can be no intersections between the essential curves of F(x1)
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and those of G(x2). In particular, we must have
(8) vL(x2) • uL(x1) = 0,

and
(9) vL1,1(x2) • uL1,1(x1) = 0.

Equation (8) and Lemma 3.39 imply that

vL(x2) • uXL = 0.

By Lemmas 3.37 and 3.38 and equation (6), we then have
F • E +G • E = α0 + d− γ0 = d,

which yields condition (6) of Proposition 3.24.
Similarly, Lemmas 3.41, 3.42 and 3.43, together with equations (7)

and (9), imply that
F • E1,1 +G • E1,1 = d

and hence condition (7) of Proposition 3.24. This completes the proof
of Proposition 3.24 in the present case.

The proofs in the other cases follow along identical lines. For the
sake of completeness we list the inequalities for the components of the
translations that lead to the desired intersection patterns of Proposition
3.24, in the remaining scenarios. For the case α0 ≥ γ0 and δ0 ≥ β0, we
choose

a1 < a2 < 0, b2 < 0 < b1, 0 < c2 < c1, and d1 < 0 < d2.

For γ0 ≥ α0 + 1 and β0 ≥ δ0 + 1, we choose
a1 < a2 < 0, b1 < 0 < b2, 0 < c2 < c1, and d2 < 0 < d1.

Finally for the case γ0 ≥ α0 + 1 and δ0 ≥ β0, we choose
a1 < a2 < 0, b1 < 0 < b2, 0 < c2 < c1, and d1 < 0 < d2.

To complete the proof of Proposition 3.24 we remark that the smooth-
ings F and G can be replaced by smooth symplectic spheres without
changing the various intersection numbers. To do this, it is enough to
replace F and G by symplectic spheres which coincide with F and G
away from neighborhoods of L(v1) and L1,1(w1), respectively L(v2) and
L1,1(w2), that is, the new spheres differ only away from all intersection
points.

Now, we know that the asymptotic ends of the top level curves of
F(x1) and G(x2) are simply covered, either because the curves are
essential, or for covers of leaves by applying Lemma 3.23. Generically
the asymptotic limits are distinct. Then, for small perturbations, we
may assume that the top level curves restricted to a neighborhood of
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the Lagrangians are symplectically isotopic to the corresponding top
level curves of our original buildings F and G. (In the case of F(x1) the
isotopy maps L(v1) and L1,1(w1) to L and L1,1 respectively.) Finally
recall that the buildings F and G are limits of sequences of smooth
embedded holomorphic spheres as our almost complex structures are
stretched along the Lagrangians. Therefore, after a small perturbation,
we may assume the top level curves of these buildings restricted to
a compact subset of the complement of L ∪ L1,1 extend to smooth
symplectic spheres in S2 × S2. Combining the isotopies and these
extensions gives our symplectic spheres as required.

3.9. Scene change. Consider (S2 × S2, π∗1ω + π∗2ω) equipped with an
almost complex structure J adapted to parameterizations ψ and ψ1,1

of L and L1,1, respectively. Compactifying the broken leaves of the
corresponding foliation F , we get a foliation F̄ of S2 × S2 by spheres.
We denote a general sphere in F̄ by H. Let F , G, E and E1,1 be the
spheres and disks from Proposition 3.24. We can work with an almost
complex structure with respect to which these spheres and disks are
holomorphic. In particular intersections with the leaves of the foliation
are all positive.

We start with the following intersection pattern and area profile.

Initial intersection numbers Initial symplectic areas

F G E E1,1 H
F 2d
G 2d 2d
E k d− k ∗
E1,1 l d− l 0 ∗
H 1 1 ∗ ∗ 0

π∗1ω + π∗2ω–area
F 2 + 2d
G 2 + 2d
E 1
E1,1 1
H 2

In this section, we use F and G to alter (S2 × S2, π∗1ω + π∗2ω), away
from L and L1,1, to derive a scenario in which the disjointness of these
Lagrangians is a contradiction. The spheres F and G intersect one
another in 2d points, {p1, . . . , p2d}. By positivity of intersection, the
homology classes involved imply that each of the pi in F ∩G lies on a
sphere, Hi, of F̄ , and the Hi are distinct. We may also assume that
for some fixed ε > 0 there are disjoint Darboux balls Bi of capacity ε
around each pi on which J is standard and the F , G and Hi restrict to
planes through the origin.

Step 1: Blow up the balls Bi of capacity ε around each of the pi.
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Denote the new manifold by (W,Ω1). It follows from the analysis
of the blowup procedure from [16], see also Proposition 9.3.3 of [17],
that (W,Ω1) contains 2d exceptional divisors Ei each of area ε. Since
the Hi are J-holomorphic in each Bi, (W,Ω1) also contains the proper
transforms of the Hi. These are denoted here by Ĥi and are symplectic
spheres of area 2− ε. By property (9) of Proposition 3.24, d of the Ĥi

intersect E once, and the other d of the Ĥi intersect E1,1 once. (Note
that we may assume the families of planes T0 and T∞, and also the
families s0 and s∞, are still J-holomorphic after our perturbation of J
since the smoothing of F and G occurs away from our broken planes.
Therefore p−1(A0) and p−1(A∞) remain the same sets as in Proposition
3.24 (9).)

The proper transforms of F and G, denoted by F̂ and Ĝ, are also
well-defined. These are spheres of area 2d+ 2− 2dε which are now dis-
joint. Every sphere H of F̄ , other than the Hi, has a proper transform
Ĥ of area two.

This information is collected in the following tables.

Intersection numbers after Step 1 Areas after Step 1

F̂ Ĝ E E1,1 Ĥ Ei Ĥi

F̂ 0
Ĝ 0 0
E k d− k ∗
E1,1 l d− l 0 ∗
Ĥ 1 1 ∗ ∗ 0
{Ei} 2d 2d 0 0 0 -1
{Ĥi} 0 0 d d 0 1 -1

Ω1–Area
F̂ 2 + 2d− 2dε

Ĝ 2 + 2d− 2dε
E 1
E1,1 1

Ĥ 2
Ei ε

Ĥi 2− ε

Step 2: Inflate both F̂ and Ĝ by adding a tubular neighborhood of
capacity d.

For the inflation result from [13], we may assume by Lemma 3.1 in
[15] that the new form tames our original almost complex structure.
In particular all of our holomorphic curves remain holomorphic and in
particular symplectic.

Denoting the resulting symplectic form on W by Ω2 we get the fol-
lowing new symplectic area profile.
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Ω2–Area
F̂ 2 + 2d− 2dε

Ĝ 2 + 2d− 2dε
E 1 + d2

E1,1 1 + d2

Ĥ 2 + 2d
Ei ε+ 2d

Ĥi 2− ε

Step 3: Apply the negative inflation procedure from [2], of size ε, to
each Ei.

Denoting the resulting symplectic form on W by Ω3, the area profile
becomes

Ω3–Area
F̂ 2 + 2d

Ĝ 2 + 2d
E 1 + d2

E1,1 1 + d2

Ĥ 2 + 2d
Ei 2d

Ĥi 2

Step 4: Blow down each Ĥi.

We denote the symplectic manifold resulting from this final step by
(X,Ω). Each of the exceptional divisors Ei in (W,Ω3) is transformed,
by Step 4, into a sphere Hi in X which has Ω-area equal to 2d + 2
and now lies in the same class as the Ĥ. The disks E and E1,1 each
intersect d of the Ĥi and so are transformed by Step 4 into disks EX
and EX

1,1, whose symplectic areas have each been increased by 2d.
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Intersection numbers after Step 4 Areas after Step 4

F̂ Ĝ EX EX
1,1 Ĥ Hi

F̂ 0
Ĝ 0 0
EX k d− k ∗
EX

1,1 l d− l 0 ∗
Ĥ 1 1 ∗ ∗ 0
{Hi} 2d 2d d d 0 0

Ω–Area
F̂ 2 + 2d

Ĝ 2 + 2d
EX 1 + d2 + 2d
EX

1,1 1 + d2 + 2d

Ĥ 2 + 2d
Hi 2 + 2d

Lemma 3.45. (X,Ω) is symplectomorphic to

(S2 × S2, (d+ 1)ω ⊕ (d+ 1)ω).

Proof. The presence of the embedded symplectic spheres F̂ and Ĥ,
which have the same Ω-area and satisfy

F̂ • F̂ = Ĥ • Ĥ = 0, and F̂ • Ĥ = 1,

implies that either (X,ω) is symplectomorphic to

(S2 × S2, (d+ 1)ω ⊕ (d+ 1)ω)

or there are finitely many symplectically embedded spheres with self-
intersersection number −1 in the complement of F̂ and Ĥ in X, and X
can be blown down to a copy of S2×S2. This follows from the proof of
Theorem 9.4.7 of [17]. As a consequence if H2(X;Z) has rank 2 then
X is symplectomorphic to S2 × S2.

A simple analysis of the construction of (X,Ω) from (S2×S2, π∗1ω+
π∗2ω) allows us to compute this rank. The 2d blow ups in Step 1 imply
that the rank of H2(W ;Z) is 2 + 2d. The subsequent 2d blow down
operations in Step 4 imply that the rank of H2(X;Z) is 2 as required.

�

Henceforth, we may identify (X,Ω) with (S2×S2, (d+1)ω⊕(d+1)ω).
The Lagrangian tori L and L1,1 are untouched, as submanifolds, by the
four steps above. They remain Lagrangian and disjoint in (X,Ω). Note
that L1,1 is not equal to the Clifford torus in (X,Ω) with respect to
the identification above. In what follows we denote the Clifford torus
in (X,Ω) by LX .

The manifold (X,Ω) also inherits an almost complex structure, de-
noted here by Ĵ , which equals J away from the collection {Ĥi}. In
particular, Ĵ is adapted to the original parameterizations ψ and ψ1,1

of L and L1,1. As in Section 3.5, Ĵ determines a straightened foliation



42 RICHARD K. HIND AND ELY KERMAN

F̂ = F(L, L1,1, ψ, ψ1,1, Ĵ) of X r (L ∪ L1,1). The original collections
of planes s0, s∞, T0 and T∞ still comprise the broken leaves of this
new foliation. The symplectic spheres F̂ and Ĝ now represent the class
(1, 0) ∈ H2(X;Z) = H2(S

2 × S2;Z). As in Proposition 3.24, it is still
true that exactly one of F̂ and Ĝ intersects the planes of s0 and the
other intersects the planes of s∞, and exactly one of F̂ and Ĝ intersects
the planes of T0 and the other intersects the planes of T∞.
Lemma 3.46. The Lagrangian tori L and L1,1 are both monotone in
(X,Ω).

Proof. Let D∞ : (D2, S1) → (S2 × S2,L) be a compactification of one
of the planes of T∞. The disk D∞ has Maslov index equal to 2 and
symplectic area equal to 1 with respect to π∗1ω+ π∗2ω. The map D∞|S1

represents the foliation class βL. The image of the map D∞ is unaf-
fected by the four steps defining the passage from (S2×S2, π∗1ω+π∗2ω)
to (X,Ω). Viewed as a map from (D2, S1) to (X,L), D∞ still has
Maslov index 2, and D∞|S1 still represents βL. The Ω–area of D∞, as
a map into (X,Ω), is d+ 1. This follows from the fact that exactly one
of F and G intersect D∞ and so the inflations in Step 2 increase the
symplectic area by d.

By assertion (4) of Proposition 3.24, the boundary E|S1 represents a
class which together with βL forms an integral basis of H1(L;Z). The
same holds for EX |S1 . To prove that L is a monotone Lagrangian torus
in (X,Ω) it then suffices, by Lemma 3.1, to prove that the Maslov index
of EX : (D2, S1)→ (X,L) is equal to

2

d+ 1
(1 + d2 + 2d) = 2d+ 2

where 1 + d2 + 2d is the area of EX . This follows from the fact that, in
(W,Ω3), E has Maslov index 2, intersects exactly d of the Ĥi, and each
of the corresponding intersection numbers is 1. In blowing down the
Ĥi, and passing from E to EX , each of these intersection points yields
an increase of 2 in the Maslov index.

The proof that L1,1 is monotone in (Y,Ω) is identical. �

Lemma 3.47. The Lagrangians L and L1,1 are both Hamiltonian iso-
topic to the Clifford torus LX in (X,Ω).

Proof. This follows from the main result of Cieliebak and Schwingen-
heuer in [4]. In the language of that paper the compactification of the
straightened foliation F̂ = F(L, L1,1, ψ, ψ1,1, Ĵ) yields a fibering of L
and a fibering of L1,1. For the fibering of L, the spheres F̂ and Ĝ are
disjoint sections in the class (1, 0) and exactly one of them intersects
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the (compactification of the ) planes of T0 and the other intersects the
those of T∞. The main theorem of [4], then implies that L is Hamilton-
ian isotopic to the Clifford torus LX in (X,Ω). An identical argument
holds for L1,1. �

With this, the contradiction to Assumption 2 becomes apparent. The
first fundamental intersection result implied by the Floer theory for
monotone Lagrangian submanifolds implies that any Lagrangian tori
Hamiltonian isotopic to LX must intersect nontrivially, [19]. Hence, L
and L1,1 can not be disjoint in (X,Ω).

Remark 3.48. The assumption that L and L1,1 are disjoint is used
twice in the proof of Theorem 1.1. At the very end, and in the proof
of Refinement 3 in Section 3.3

Remark 3.49. The fact that L1,1 is the Clifford torus (and not just
another monotone Lagrangian torus) is crucial (only) in the proof of
the existence results Proposition 3.20 and Proposition 3.22.

Remark 3.50. There is an alternative to the argument used at the end
of the proof of Theorem 1.1 that avoids appealing to Lagrangian Floer
homology. Instead one can use the fact that the symplectomorphism in
Lemma 3.45 can be chosen to map F̂ , Ĝ and the transforms T̂0 and T̂∞
to the axes S2×{0}, S2×{∞}, {0}×S2 and {∞}×S2 respectively. The
complement of these axes in S2 × S2 can be identified with a domain
in T ∗T 2, in which the Clifford torus is identified with the zero section.
We can check that L and L1,1 are homologically nontrivial in this copy
of T ∗T 2 and so, by Theorem 3.9, are Hamiltonian isotopic to constant
sections. The monotonicity condition then implies the constant section
must be the zero section. Finally Gromov’s intersection theorem for
exact Lagrangians in cotangent bundles, from Section 2.3.B′′4 of [7],
implies that they must intersect.

4. Proof of Theorem 1.2.

It suffices to prove the following.

Theorem 4.1. For any ε > 0 there is a δ > 0 and a symplectic em-
bedding of the polydisk P (1 + δ, 1 + δ) into P (2 + ε, 2 + ε) whose image
is disjoint from the product Lagrangians Lk,l for k, l ∈ {1, 2}.

The desired additional integral Lagrangian torus L+ is the one on
(the image of) the boundary of P (1, 1) ⊂ P (1 + δ, 1 + δ).
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4.1. Proof of Theorem 4.1. We will use rescaled polar coordinates
θi, Ri on R4 = C2 where Ri = π|zi|2 and θi ∈ R/Z. In these coordinates
the standard symplectic form is

ω =
2∑
i=1

dRi ∧ dθi

and Lk,l = {(θ1, k, θ2, l)}.

4.1.1. A polydisk. For ε > 0 fixed, choose positive numbers `, w such
that

• 2 < ` < 2 + ε
• w < 2
• 1

`
+ 1

w
< 1.

Then choose positive constants σ and δ such that
• `+ σ < 2 + ε
• w + σ < 2
• 1+δ

`
+ 1+δ

w
< 1

Set
S = {σ < R1 < `+ σ, σ < R2 < w + σ}

and

T =

{
0 < θ1 <

1 + δ

`
, 0 < θ2 <

1 + δ

w

}
.

Note that S × T is a subset of P (2 + ε, 2 + ε) and is symplectomorphic
to P (1 + δ, 1 + δ). Both L1,1 and L2,1 intersect S × T , while L1,2 and
L2,2 do not.

4.1.2. The plan. To prove Theorem 4.1 it suffices to find a Hamiltonian
diffeomorphism of P (2 + ε, 2 + ε) that displaces S × T from the Lk,l.
Equivalently, we construct a Hamiltonian diffeomorphism Ψ of P (2 +
ε, 2 + ε) such that each of the images Ψ(Lk,l) is disjoint from S × T .

To construct Ψ we use Hamiltonian functions which are of the form
F (θ1, θ2). The Hamiltonian flow, φtF , of such a function preserves θ1
and θ2 and generates a Hamiltonian vector field parallel to the R1R2–
plane. In particular, the only points of φtF (Lk,l) which could possibly
intersect S × T are those whose (θ1, θ2) coordinates lie in T .

Since we only need to control the images of the Lk,l, we can cut off
autonomous functions like F in (moving) neighborhoods of φtF (Lk,l) for
specific values of k and l. After this cutting off, the new Hamiltonian
will depend on all variables and be time dependent. In general, for a
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closed subset V , we denote the function obtained by cutting of F along
φtF (V ) by F[V ]. Note that

φtF[V ]
(v) = φtF (v), for all v ∈ V and t ∈ [0, 1].

As well, each map φtF[V ]
is equal to the identity away from an arbitrarily

small neighborhood of ⋃
t∈[0,1]

φtF (V ).

4.1.3. A diagonal move. Let g : R/Z → R be a smooth function such
that for some positive real number c(g) > 0 we have

g′(s) = c(g), for s ∈
[
0,

1 + δ

`
+

1 + δ

w

]
,

max(g′) = c(g), and min(g′) is less than and arbitrarily close to

−c(g)

(
1+δ
`

+ 1+δ
w

1− 1+δ
`
− 1+δ

w

)
.

Letting G(θ1, θ2) = g(θ1 + θ2), we have

(10) φtG(θ1, R1, θ2, R2) = (θ1, R1 + tg′(θ1 + θ2), θ2, R2 + tg′(θ1 + θ2))

The image φ1
G(L1,2) is well defined as long as

(11) c(g) <
1− 1+δ

`
− 1+δ

w
1+δ
`

+ 1+δ
w

and is contained in P (2 + ε, 2 + ε) as long as c(g) < ε. Henceforth,
we will assume that `, w and δ have been chosen such that the first
constraint on c(g), implies the second.

It follows from (10) and (11) that φtG(L1,2) is contained in

{R1 ≤ 1 + c(g)} ∩ {R2 > 1}
for all t ∈ [0, 1]. Hence, each image φtG(L1,2) is disjoint from the other
Lk,l. Since g′ = c(g) > 0 on T , each φtG(L1,2) is also disjoint from S×T .

4.1.4. A vertical move. Let h : R/Z → R be a smooth function such
that for some positive real number 0 < c(h) < σ we have

h′(s) = −(1− c(h)), for s ∈
[
0,

1 + δ

w

]
,

min(h′) = −(1−c(h)), and max(h′) is greater than and arbitrarily close
to

(1− c(h))
(
1+δ
w

)
1− 1+δ

w

=
1− c(h)
w

1+δ
− 1
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which is greater than one since w + σ < 2 and c(h) < σ.
Letting H(θ1, θ2) = h(θ2), we have

(12) φtH(θ1, R1, θ2, R2) = (θ1, R1, θ2, R2 + th′(θ2)).

Clearly, L2,1 and L2,2 are disjoint from φtH(L1,1) for all t ∈ [0, 1]. More-
over, for θ2 in

[
0, 1+δ

w

]
we have

φ1
H(θ1, 1, θ2, 1) = (θ1, 1, θ2, c(h)).

So φ1
H(L1,1) is disjoint from T × S by our choice of c(h).

Some points of L1,1, with values of θ2 in
(
1+δ
w
, 1
)
, are mapped by φ1

H

to points having R2 coordinate greater than and arbitrarily close to

1 +
1− c(h)
w

1+δ
− 1

> 2.

Choosing w sufficiently close to 2, and δ sufficiently small we can ensure
that φ1

H(L1,1) lies in P (2 + ε, 2 + ε).

4.1.5. A time delay. The Hamiltonian diffeomorphism φ1
H[L1,1]

can not
be used to move L1,1 off of S × T while leaving L1,2 undisturbed. For,
as described in the discussion above, φ1

H[L1,1]
(L1,2) will intersect S × T .

The Hamiltonian diffeomorphism

φ1
H[L1,1]

◦ φ1
G[L1,2]

has the same problem. By (10) and (12), the image of (θ1, 1, θ2, 1) ∈
L1,1 under φtH belongs to φ1

G(L1,2) if and only if g′(θ1 + θ2) = 0 and
th′(θ2) = 1. Since max(h′) > 1, these intersections occur and so the
map above will again push L1,2 into S × T.

We can fix this by adding a time delay. The first intersection between
φtH(L1,1) and φ1

G(L1,2) occurs at t = (max(h′))−1. Let τ be less than
and arbitrarily close to (max(h′))−1. Hence, τ is also less than and
arbitrarily close to

w
1+δ
− 1

1− c(h)
.

Consider the Hamiltonian diffeomorphism

Ψ̃ = φ1−τ
H

[φτH (L1,1)∪φ1G(L1,2)]
◦ φτH[L1,1]

◦ φ1
G[L1,2]

.

It follows from the analysis above, that the map Ψ̃ is compactly sup-
ported in P (2 + ε, 2 + ε). In fact, it is supported in an arbitrarily small
neighborhood of the subset {R1 ≤ 1+c(g)}. Hence, Ψ̃(L2,1) = L2,1 and
Ψ̃(L2,2) = L2,2. By the definitions of τ and the cut-off operation we
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have Ψ̃(L1,1) = φ1
H(L1,1) and thus Ψ̃(L1,1) is disjoint from S × T . In

addition, we now have the following.

Lemma 4.2. The image Ψ̃(L1,2) is disjoint from S × T when c(h) is
sufficiently close to σ and δ is sufficiently small.

Proof. By construction, for (θ1, θ2) ∈ T we have

Ψ̃(θ1, 1, θ2, 2) = (θ1, 1 + g′(θ1 + θ2), θ2, 2 + g′(θ1 + θ2) + (1− τ)h′(θ2))

= (θ1, 1 + c(g), θ2, 2 + c(g)− (1− τ)(1− c(h))).

It suffices to show that we can choose c(g) and c(h) so that

(13) 2 + c(g)− (1− τ)(1− c(h)) > w + σ.

Since τ is less than and arbitrarily close to
w

1+δ
− 1

1− c(h)
,

is also suffices to show that we can choose c(g) and c(h) so that

c(g) > w

(
1− 1

1 + δ

)
+ (σ − c(h)).

The righthand side can be made arbitrarily small by taking c(h) to be
close to σ and δ to be small. Since the choice of c(g) is independent of
the choice of c(h) and the constraint (11) on c(g) relaxes as δ goes to
zero, we are done. �

Henceforth, we will assume that the conditions of Claim 4.2 hold.

4.1.6. A final (horizontal) adjustment. The images Ψ̃(L1,1), Ψ̃(L1,2)

and Ψ̃(L2,2) are disjoint from S × T but Ψ̃ still fixes L1,2 which in-
tersects S × T . Since L1,2 is close to the boundary of S × T , we can
make a simple adjustment to obtain the desired map Ψ which moves
L1,2 off of S × T as well.

Let f : R/Z → R be a smooth function such that for some positive
real number c(f) greater than and arbitrarily close to `+σ−2 we have

f ′(s) = c(f), for s ∈
[
0,

1 + δ

`

]
,

max(f ′) = c(f), and min(f ′) is less than and arbitrarily close to

− c(f)
`

1+δ
− 1

.

Setting F (θ1, θ2) = f(θ1), we have

φtF (θ1, R1, θ2, R2) = (θ1, R1 + tf ′(θ1), θ2, R2).
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Our lower bound for c(f) implies that φ1
F (L2,1) is disjoint from S×T .

Looking at the R2-component, it is clear that φ1
F (L2,1) is disjoint from

L2,2 = Ψ̃(L2,2). To prove that φ1
F (L2,1) is also disjoint from Ψ̃(L1,1)

and Ψ̃(L1,2) it suffices to prove the following.

Lemma 4.3. The sets {R1 ≤ 1 + c(g)} and φ1
F (L2,1) are disjoint.

Proof. It suffices to prove that

2− c(f)
`

1+δ
− 1

> 1 + c(g)

or, even more, that

1 > c(g) +
`+ σ − 2

`
1+δ
− 1

.

The latter inequality clearly holds for all sufficiently small values of
c(g) and `+ σ − 2. �

The Hamiltonian diffeomorphism

Ψ = φ1
F[L2,1]

◦ φ1−τ
H

[φτH (L1,1)∪φ1G(L1,2)]
◦ φτH[L1,1]

◦ φ1
G[L1,2]

now has all the desired properties. With its construction, the proof of
Theorem 4.1 is complete.

Question 4.4. Can Ψ, or any other Hamiltonian diffeomorphism which
displaces the Lk,l from S × T , be generated by an autonomous Hamil-
tonian?
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