Symplectic capacities of domains in \mathbb{C}^{2}

R. Hind

October 10, 2005

1 Introduction

In his paper [3] M. Gromov proved his celebrated non-squeezing theorem. We will study domains D in \mathbb{C}^{2} with standard coordinates $\left(z_{1}, z_{2}\right)$ and projections π_{1} and π_{2} onto the z_{1} and z_{2} planes respectively. The standard symplectic form on \mathbb{C}^{2} is $\omega=\frac{i}{2} \sum_{j=1}^{2} d z_{j} \wedge d \bar{z}_{j}$ and this restricts to a symplectic form on the balls $B(r)=\left\{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<r^{2}\right\}$. In this notation Gromov's non-squeezing theorem states that if area $\left(\pi_{1}(D)\right) \leq C$ and there exists a symplectic embedding $B(r) \rightarrow D$ then $\pi r^{2} \leq C$. Nowadays this can be rephrased as saying that the Gromov width of D is at most C. Of course this is sharp when D is a cylinder $\left\{\left|z_{1}\right|<r\right\}$.

For general D it is natural to ask whether we can estimate the Gromov width instead in terms of the cross-sectional areas area $\left(D \cap\left\{z_{2}=b\right\}\right)$. But for any $\epsilon>0$ there exists a construction of F. Schlenk, [4], of a domain D lying in a cylinder $\left\{\left|z_{1}\right|<1\right\}$ with Gromov width at least $\pi-\epsilon$ but with all cross-sections having area less than ϵ. At least if we drop the condition on the domain lying in the cylinder, the cross-sections can even be arranged to be star-shaped, see [5]. Nevertheless in this note we will obtain such an estimate in terms of the areas of the cross-sections for domains whose cross-sections are all starshaped about the axis $\left\{z_{1}=0\right\}$.

Theorem 1 Let $D \subset \mathbb{C}^{2}$ be a domain whose cross-sections $D \cap\left\{z_{2}=b\right\}$ are star-shaped about center $z_{1}=0$. Define $C=\sup _{b} \operatorname{area}\left(\left\{z_{2}=b\right\} \cap D\right)$. Then if
$B(r) \rightarrow D$ is a symplectic embedding we have $\pi r^{2} \leq C$. In other words, D has Gromov width at most C.

In section 2 we will establish an estimate on the Gromov width for such domains D. This is combined with a symplectic embedding construction to obtain our result in section 3 .

The author would like to thank Felix Schlenk for patiently answering many questions.

2 Embedding estimate

Here we prove the following theorem.

Theorem 2 Fix constants $0<K \leq M$ and $0<t<1$. Let $D \subset \mathbb{C}^{2}$ be a domain of the form $D=\left\{r<c\left(\theta, z_{2}\right),\left|z_{2}\right|<M\right\}$ where (r, θ) are polar coordinates in the z_{1} plane and $c\left(\theta, z_{2}\right)$ is a real-valued function satisfying $t \leq c\left(\theta, z_{2}\right) \leq 1$ and $\left|\frac{\partial c}{\partial z_{2}}\right| \leq \frac{1}{K}$.

Define $C=\sup _{b}$ area $\left(\left\{z_{2}=b\right\} \cap D\right)$. Then if $B(r) \rightarrow D$ is a symplectic embedding of the standard ball of radius r in \mathbb{C}^{2} we have $\pi r^{2}<C+3 \sqrt{\frac{M}{t K^{3}}}$.

Its key implication for us is the following.

Corollary 3 Let $D=\left\{r<c\left(\theta, z_{2}\right),\left|z_{2}\right|<M\right\} \subset \mathbb{C}^{2}$ and $C=\sup _{c}$ area $\left(\left\{z_{2}=\right.\right.$ $b\} \cap D)$. For any $L>0$ the domain D is a symplectic manifold with symplectic form $\omega_{L}=\frac{i}{2}\left(d z_{1} \wedge d \bar{z}_{1}+L d z_{2} \wedge d \bar{z}_{2}\right)$. Let $r>0$ with $\pi r^{2}>C$. Then for all L sufficiently large the symplectic manifold $\left(D, \omega_{L}\right)$ does not admit a symplectic embedding of the ball $B(r)$.

This follows by rescaling. Note above that the volume of $\left(D, \omega_{L}\right)$ approaches infinity as $L \rightarrow \infty$.

Proof of Theorem 2

We consider the symplectic manifold $S^{2} \times \mathbb{C}$ with a standard product symplectic form $\omega=\omega_{1} \oplus \omega_{2}$ and still use coordinates $\left(z_{1}, z_{2}\right)$, where z_{1} now extends
from \mathbb{C} to give a coordinate on the $S^{2}=\mathbb{C} P^{1}$ factor. Still π_{1} and π_{2} denote the projections onto the coordinate planes. Let F be the area of the first factor, we suppose that this is sufficiently large that the complement of $\left\{z_{1}=\infty\right\}$ can be identified with a neighborhood of $\left\{\left|z_{1}\right| \leq 1\right\}$ in \mathbb{C}^{2}, the identification preserving the product complex and symplectic structures. In other words, from now we assume that $D \subset S^{2} \times \mathbb{C} \backslash\left\{z_{1}=\infty\right\}$ and satisfies the conditions on its cross-sections. Let D^{c} denote the complement of D in $S^{2} \times \mathbb{C}$.

Now let $\phi: B(r) \rightarrow D$ be a symplectic embedding. Then we consider almostcomplex structures J on $S^{2} \times \mathbb{C}$ which are tamed by ω and coincide with the standard product structure on D^{c}. By now it is well-known, see [3], that for all such J the almost-complex manifold $S^{2} \times \mathbb{C}$ can be foliated by J-holomorphic spheres. In $\left\{\left|z_{2}\right| \geq M\right\}$ the foliation simply consists of the S^{2} factors.

Let S denote the image of the holomorphic curve in our foliation passing through $\phi(0)$. By positivity of intersections S intersects $\left\{z_{1}=\infty\right\}$ in a single point, say $\left\{z_{2}=b\right\}$. As above we will use polar coordinates (r, θ) in the plane $\left\{z_{2}=b\right\}$. So we can write $D \cap\left\{z_{2}=b\right\}=\{r \leq c(\theta, b):=c(\theta)\}$. Let $A=$ area $\left(\left\{z_{2}=b\right\} \cap D\right)$. We intend to obtain lower bounds for both $\int_{S \cap D^{c}} \omega_{1}$ and $\int_{S \cap D^{c}} \omega_{2}$.

First of all, we will suppose that $\pi_{1}\left(S \cap D^{c}\right)=\{r \geq g(\theta)\}$ for a positive function g and that $S \cap D^{c}$ is a graph $\left\{z_{2}=u\left(z_{1}\right)\right\}$ over this region. We explain later how essentially the same proof applies to the general case. Recall that our assumptions imply that $t \leq c(\theta), g(\theta) \leq 1$ for all θ. Define $h(\theta)=|g(\theta)-c(\theta)|$.

Define a holomorphic function $f:\left\{r \leq \frac{1}{g(-\theta)}\right\} \rightarrow\left\{\left|z_{2}\right| \leq M\right\}$ by $f(z)=$ $u\left(\frac{1}{z}\right)$. Then $f(0)=b$ and $|f(z)| \leq M$ for all z. Therefore composing f with a translation we can redefine f as a function $f:\left\{r \leq \frac{1}{g(-\theta)}\right\} \rightarrow\left\{\left|z_{2}\right| \leq 2 M\right\}$ with $f(0)=0$.

As $g(\theta) \leq 1$ for all θ the map f restricts to one from $\{|z| \leq 1\}$ and so by the Schwarz Lemma, if $|z|<1$ we have $\left|f^{\prime}(z)\right| \leq \frac{2 M}{1-|z|}$. On the boundary of the disk, our assumptions on the boundary of D imply that $\left|f\left(\frac{1}{g(-\theta)} e^{i \theta}\right)\right| \geq K h(\theta)$.

Now we estimate

$$
\begin{aligned}
\int_{S \cap D^{c}} \omega_{2} & =\operatorname{area}(\operatorname{image}(f)) \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{\frac{1}{g(-\theta)}} r\left|f^{\prime}(z)\right|^{2} d r \\
& =\int_{0}^{2 \pi} g(-\theta) d \theta\left(\int_{0}^{\frac{1}{g(-\theta)}} r\left|f^{\prime}(z)\right|^{2} d r\right)\left(\int_{0}^{\frac{1}{g(-\theta)}} d r\right) \\
& \geq t \int_{0}^{2 \pi} d \theta\left(\int_{0}^{\frac{1}{g(-\theta)}} r^{\frac{1}{2}}\left|f^{\prime}(z)\right| d r\right)^{2}
\end{aligned}
$$

Now

$$
\int_{0}^{\frac{1}{g(-\theta)}}\left|f^{\prime}(z)\right| d r \geq K h(\theta)
$$

and over all such functions $\left|f^{\prime}(z)\right|$ the final integral above is minimized by taking $\left|f^{\prime}(z)\right|$ as large as possible for small values of r. We compute

$$
\int_{0}^{y} \frac{2 M}{1-r} d r=K h(\theta)
$$

when $y=1-e^{\frac{-K h(\theta)}{2 M}}<\frac{1}{g(-\theta)}$. Therefore putting $y=x^{2}$ we have

$$
\begin{aligned}
t \int_{0}^{2 \pi} d \theta\left(\int_{0}^{\frac{1}{g(-\theta)}} r^{\frac{1}{2}}\left|f^{\prime}(z)\right| d r\right)^{2} & \geq t \int_{0}^{2 \pi} d \theta\left(\int_{0}^{x^{2}} \frac{2 M \sqrt{r}}{1-r} d r\right)^{2} \\
& =4 M^{2} t \int_{0}^{2 \pi} d \theta\left(\left[-2 \sqrt{r}+\ln \left(\frac{1+\sqrt{r}}{1-\sqrt{r}}\right)\right]_{0}^{x^{2}}\right)^{2} \\
& =4 M^{2} t \int_{0}^{2 \pi} d \theta\left(-2 x+\ln \left(\frac{1+x}{1-x}\right)\right)^{2} \\
& \geq 4 M^{2} t \int_{0}^{2 \pi} \frac{4 x^{6}}{9} d \theta
\end{aligned}
$$

for the final estimate using the fact that $0<x<1$.
Now

$$
x^{2}=1-e^{\frac{-K h(\theta)}{2 M}} \geq\left(1-e^{-\frac{1}{2}}\right) \frac{K h(\theta)}{M}
$$

since $\frac{K h(\theta)}{2 M} \leq \frac{1}{2}$.
Therefore

$$
\int_{S \cap D^{c}} \omega_{2} \geq 4 M^{2} t \int_{0}^{2 \pi} \frac{4 x^{6}}{9} d \theta
$$

$$
\geq \frac{16}{9}\left(1-e^{-\frac{1}{2}}\right)^{3} \frac{t K^{3}}{M} \int_{0}^{2 \pi} h(\theta)^{3} d \theta
$$

Next we compute

$$
\begin{aligned}
\int_{S \cap D^{c}} \omega_{1} & =F-\frac{1}{2} \int_{0}^{2 \pi} g(\theta)^{2} d \theta \\
& =F-A-\frac{1}{2} \int_{0}^{2 \pi}\left(g(\theta)^{2}-c(\theta)^{2}\right) d \theta \\
& \geq F-A-\frac{1}{2} \int_{0}^{2 \pi}(g(\theta)-c(\theta))(g(\theta)+c(\theta)) d \theta \\
& \geq F-A-\int_{0}^{2 \pi} h(\theta) d \theta
\end{aligned}
$$

Therefore writing $k=\frac{16}{9}\left(1-e^{-\frac{1}{2}}\right)^{3} \frac{t K^{3}}{M}$ we have

$$
\begin{aligned}
\int_{S \cap D^{c}} \omega & \geq F-A-\int_{0}^{2 \pi}\left(h(\theta)-k h(\theta)^{3}\right) d \theta \\
& \geq F-A-2 \pi \frac{2}{3 \sqrt{3 k}} \\
& =F-A-\pi \sqrt{\frac{M}{3\left(1-e^{-\frac{1}{2}}\right)^{3} t K^{3}}}
\end{aligned}
$$

Thus $S \cap D$ has symplectic area at most $A+\pi \sqrt{\frac{M}{3\left(1-e^{-\frac{1}{2}}\right)^{3} t K^{3}}}<A+3 \sqrt{\frac{M}{t K^{3}}}$, since S itself has area F.

We assumed above that $\pi_{1}\left(S \cap D^{c}\right)$ is starshaped about $z_{1}=0$ and that $S \cap D^{c}$ is a graph over this region. If the projection $\pi_{1}: S \rightarrow \pi_{1}\left(S \cap D^{c}\right)$ is a branched cover then we can define a function f as before simply choosing a suitable branch along the rays $\{\theta=$ constant $\}$. The proof then applies as before. Now suppose that $\pi_{1}\left(S \cap D^{c}\right)$ is not starshaped about $z_{1}=0$. Then we find the smallest possible starshaped set $\{r \leq g(\theta)\}$ containing the complement of $\pi_{1}\left(S \cap D^{c}\right)$. The defining function g will then have discontinuities but this does not affect the proof which again proceeds as before.

Finally we choose a J which coincides with the push forward of the standard complex structure on the ball $B(r)$ under ϕ but remains standard outside D. The part of S intersecting the image of ϕ is now a minimal surface with respect to the standard pushed forward metric on the ball and so must have area at least πr^{2}, giving our inequality as required.

3 Proof of Theorem 1

For any domain $E \subset \mathbb{C}^{2}$ we will write $C(E)=\sup _{b}$ area $\left(\left\{z_{2}=b\right\} \cap E\right)$. Again we let $C=C(D)$. Arguing by contradiction suppose that $B(r) \rightarrow D$ is a symplectic embedding with $\pi r^{2}>C+\epsilon$.

Let B be the image of the ball of radius r in D. We will prove Theorem 1 by finding a symplectic embedding of B into $\left(D_{1}, \omega_{L}\right)$ for all sufficiently large L, where D_{1} is a domain C^{0} close to D and with $C\left(D_{1}\right)<C(D)+\epsilon$. Such embeddings would contradict Corollary 3.

First we choose a lattice of the z_{2} plane sufficiently fine that if we denote the gridsquares by G_{i} then $\sup _{i} \operatorname{area}\left(\pi_{1}\left(D \cap \pi_{2}^{-1}\left(G_{i}\right)\right)\right)<C(D)+\epsilon$. Then we let $D_{1}=\bigcup_{i} \pi_{1}\left(D \cap \pi_{2}^{-1}\left(G_{i}\right)\right) \times G_{i}$, suitably smoothed.

Let $\left\{b_{j}\right\}$ be the vertices of our lattice. We make the following simple observation.

Lemma 4 Suppose that $B \cap\left\{z_{2}=b_{j}\right\}=\emptyset$ for all j. Then there exists a symplectic embedding of B into $\left(D_{1}, \omega_{L}\right)$ for all sufficiently large L.

Proof It suffices to find a diffeomorphism ψ of $\mathbb{C} \backslash\left\{b_{j}\right\}$ which preserves the G_{i} and such that $\psi^{*}\left(L \omega_{0}\right)=\omega_{0}$, letting $\omega_{0}=d z \wedge d \bar{z}$ be the standard symplectic form. It is not hard to construct such a map, and the product of this map on the z_{2} plane with the identity map on the z_{1} plane gives a suitable embedding.

Given Lemma 4, to find our embedding it remains to find a symplectic isotopy of D_{1} such that the image of B is disjoint from the planes $C_{j}=\left\{z_{2}=\right.$ $\left.b_{j}\right\}$. Equivalently we will find a symplectic isotopy of the union of the C_{j}, compactly supported in a neighborhood of B and moving the C_{j} away from B.

We may assume that the embedding of the ball of radius r extends to a symplectic embedding of a ball of radius s where s is slightly greater than r. Let U be the image of this ball and J_{0} the push-forward of the standard complex structure on \mathbb{C}^{2} to U under the embedding.

Lemma 5 There exists a C^{0} small symplectic isotopy supported near ∂U which moves each C_{j} into a J_{0}-holomorphic curve near ∂U.

Proof Let $(x+i y, u+i v)$ be local coordinates on \mathbb{C}^{2}. Let C be one of our curves. We may assume that in these coordinates near to the origin $C \cap \partial U$ is the curve $\{(x, 0,0,0)\}$ and therefore that nearby C is the graph over the (x, y) plane of a function $h(x, y)=(u, v)$. So $u=v=0$ when $y=0$.

There exists a constant k such that $|u|,|v|,\left|\frac{\partial u}{\partial x}\right|$ and $\left|\frac{\partial v}{\partial x}\right|$ are all bounded by $k|y|$ near $y=0$.

Now, such a graph is symplectic provided

$$
\left|\frac{\partial u}{\partial x} \frac{\partial v}{\partial y}-\frac{\partial v}{\partial x} \frac{\partial u}{\partial y}\right|<1
$$

We can make C holomorphic near ∂U by replacing h by ($\chi u, \chi v$) where χ is a function of y, equal to 0 near $y=0$ and 1 away from a small neighborhood. The resulting graph remains symplectic provided

$$
\left|\chi \frac{\partial u}{\partial x}\left(\chi^{\prime} v+\chi \frac{\partial v}{\partial y}\right)-\chi \frac{\partial v}{\partial x}\left(\chi^{\prime} u+\chi \frac{\partial u}{\partial y}\right)\right|<1
$$

or rewriting

$$
\left|\chi^{2}\left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial y}-\frac{\partial v}{\partial x} \frac{\partial u}{\partial y}\right)+\chi \chi^{\prime}\left(v \frac{\partial u}{\partial x}-u \frac{\partial v}{\partial x}\right)\right|<1
$$

If we assume that $\left|\frac{\partial u}{\partial x} \frac{\partial v}{\partial y}-\frac{\partial v}{\partial x} \frac{\partial u}{\partial y}\right|<1-\delta$ the graph remains symplectic if χ is chosen such that

$$
\left|\chi \chi^{\prime}\left(v \frac{\partial u}{\partial x}-u \frac{\partial v}{\partial x}\right)\right|<\delta
$$

which is guaranteed if $\chi^{\prime}<\frac{\delta}{k y^{2}}$.
Since the integral $\int_{0}^{t} \frac{\delta}{k y^{2}} d y$ diverges a function χ satisfying this condition while being equal to 0 near 0 and 1 away from an arbitrarily small neighborhood does indeed exist as required. The resulting surface is clearly isotopic through symplectic surfaces to the original C.

We now replace the C_{j} by their images under the isotopy from Lemma 5 . We let J be an almost-complex structure on U which is tamed by ω, coincides with J_{0} near ∂U, and such that the $C_{j} \cap U$ are J-holomorphic.

Now (U, J) is an (almost-complex) Stein manifold in the sense that it admits a plurisubharmonic exhaustion function $\phi: U \rightarrow[0, R)$. In fact, work of Eliashberg, see [1] and [2], implies that such a plurisubharmonic exhaustion exists
with a unique critical point, its minimum. Generically this will be disjoint from the C_{j}.

Near the boundary we can take ϕ to be the push-forward under the embedding of a function $\frac{|z|^{N}}{C}$ for some integer $N \geq 2$ (depending perhaps on U) and (any given) constant C. The definition of a plurisubharmonic function states that $\omega_{\phi}=-d d^{c} \phi$ is a symplectic form on U which is compatible with J (for a function f we define $\left.d^{c} f:=d f \circ J\right)$. We can choose C such that $\left.\omega_{\phi}\right|_{\partial U}=\left.\omega\right|_{\partial U}$ and thus by Moser's lemma the symplectic manifolds (U, ω) and $\left(U, \omega_{\phi}\right)$ are symplectomorphic via a symplectomorphism F fixing the boundary. In fact, adjusting the isotopy provided by Moser's method we may assume that F fixes the C_{j} (since they are symplectic with respect to both ω and ω_{ϕ}). Let V denote the image of $U \backslash B$ under F and suppose that $\left\{\phi \geq R_{0}\right\} \subset V$.

It now suffices to find a symplectic isotopy of the C_{j} in $\left(U, \omega_{\phi}\right)$ moving the surfaces into the region $\left\{\phi \geq R_{0}\right\}$. Then the preimages of these surfaces under F gives a symplectic isotopy moving them away from B as required.

Let Y be the gradient of ϕ with respect to the Kähler metric associated to ϕ. Equivalently Y is defined by $Y\rfloor \omega_{\phi}=-d^{c} \phi$. Define $\chi:[0, R) \rightarrow[0,1]$ to have compact support but satisfy $\chi(t)=1$ for $t \leq R_{0}$. Then the images of the C_{j} under the one-parameter group of diffeomorphisms generated by $X=\chi(\phi) Y$ will eventually lie in $\left\{\phi \geq R_{0}\right\}$. Thus we can conclude after checking that they remain symplectic during this isotopy. We recall that the C_{j} are J-holomorphic and finish with the following lemma.

Lemma 6 Let G be a diffeomorphism of U generated by the flow of the vectorfield X. Then $G^{*} \omega_{\phi}(Z, J Z)>0$ for all non-zero vectors Z.

Proof For any function f we compute

$$
\begin{aligned}
\mathcal{L}_{X} f(\phi) d^{c} \phi & \left.\left.\left.=f^{\prime}(\phi) X\right\rfloor d \phi \wedge d^{c} \phi+f(\phi) X\right\rfloor d d^{c} \phi+d(f(\phi) X\rfloor d^{c} \phi\right) \\
& =\left(f^{\prime}(\phi) d \phi(X)+f(\phi) \chi(\phi)\right) d^{c} \phi
\end{aligned}
$$

Thus $G^{*} d^{c} \phi=g(\phi) d^{c} \phi$ for some function g and

$$
G^{*} \omega_{\phi}=g(\phi) \omega_{\phi}-g^{\prime}(\phi) d \phi \wedge d^{c} \phi .
$$

The function g is certainly positive and so $G^{*} \omega_{\phi}$ evaluates positively on the (contact) planes $\left\{d \phi=d^{c} \phi=0\right\}$. Therefore if $G^{*} \omega_{\phi}$ evaluates nonpositively on a J-holomorphic plane then there exists such a plane containing Y. But this is clearly not the case, as $G^{*} \omega_{\phi}(Y, J Y)=\omega_{\phi}\left(G_{*} Y, G_{*} J Y\right)=-k d^{c} \phi\left(G_{*} J Y\right)$ for some positive constant k and $-d^{c} \phi\left(G_{*} J Y\right)=-G^{*} d^{c} \phi(J Y)=g(\phi) d \phi(Y)>0$.

References

[1] Y. Eliashberg, Filling by holomorphic disks and its applications, London Math. Society Lecture Notes, Series 151 (1991), 45-67.
[2] Y. Eliashberg, Symplectic Geometry of plurisubharmonic functions, with notes by Miguel Abreu, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 488, Gauge theory and symplectic geometry (Montreal, $P Q$ 1995), 49-67, Kluwer Acad. Publ., Dordrecht, 199%.
[3] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Inv. Math., 82(1985), 307-347.
[4] F. Schlenk, On a question of Dusa McDuff. Int. Math. Res. Not., 2003, no. 2, 77-107.
[5] F. Schlenk, Embedding problems in symplectic geometry, de Gruyter Expositions in Mathematics, 40, Berlin, 2005.

Richard Hind
Department of Mathematics
University of Notre Dame
Notre Dame, IN 46556
email: hind.1@nd.edu

