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1 Introduction

In his paper [3] M. Gromov proved his celebrated non-squeezing theorem. We

will study domains D in C2 with standard coordinates (z1, z2) and projections

π1 and π2 onto the z1 and z2 planes respectively. The standard symplectic

form on C2 is ω = i
2

∑2
j=1 dzj ∧ dzj and this restricts to a symplectic form on

the balls B(r) = {|z1|2 + |z2|2 < r2}. In this notation Gromov’s non-squeezing

theorem states that if area(π1(D)) ≤ C and there exists a symplectic embedding

B(r) → D then πr2 ≤ C. Nowadays this can be rephrased as saying that the

Gromov width of D is at most C. Of course this is sharp when D is a cylinder

{|z1| < r}.
For general D it is natural to ask whether we can estimate the Gromov width

instead in terms of the cross-sectional areas area(D ∩ {z2 = b}). But for any

ε > 0 there exists a construction of F. Schlenk, [4], of a domain D lying in a

cylinder {|z1| < 1} with Gromov width at least π− ε but with all cross-sections

having area less than ε. At least if we drop the condition on the domain lying

in the cylinder, the cross-sections can even be arranged to be star-shaped, see

[5]. Nevertheless in this note we will obtain such an estimate in terms of the

areas of the cross-sections for domains whose cross-sections are all starshaped

about the axis {z1 = 0}.

Theorem 1 Let D ⊂ C2 be a domain whose cross-sections D ∩ {z2 = b} are

star-shaped about center z1 = 0. Define C = supb area({z2 = b} ∩D). Then if
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B(r) → D is a symplectic embedding we have πr2 ≤ C. In other words, D has

Gromov width at most C.

In section 2 we will establish an estimate on the Gromov width for such

domains D. This is combined with a symplectic embedding construction to

obtain our result in section 3.

The author would like to thank Felix Schlenk for patiently answering many

questions.

2 Embedding estimate

Here we prove the following theorem.

Theorem 2 Fix constants 0 < K ≤ M and 0 < t < 1. Let D ⊂ C2 be a domain

of the form D = {r < c(θ, z2), |z2| < M} where (r, θ) are polar coordinates in

the z1 plane and c(θ, z2) is a real-valued function satisfying t ≤ c(θ, z2) ≤ 1 and

| ∂c
∂z2
| ≤ 1

K .

Define C = supb area({z2 = b} ∩ D). Then if B(r) → D is a symplectic

embedding of the standard ball of radius r in C2 we have πr2 < C + 3
√

M
tK3 .

Its key implication for us is the following.

Corollary 3 Let D = {r < c(θ, z2), |z2| < M} ⊂ C2 and C = supc area({z2 =

b} ∩D). For any L > 0 the domain D is a symplectic manifold with symplectic

form ωL = i
2 (dz1 ∧ dz1 + Ldz2 ∧ dz2). Let r > 0 with πr2 > C. Then for all

L sufficiently large the symplectic manifold (D,ωL) does not admit a symplectic

embedding of the ball B(r).

This follows by rescaling. Note above that the volume of (D, ωL) approaches

infinity as L →∞.

Proof of Theorem 2

We consider the symplectic manifold S2 ×C with a standard product sym-

plectic form ω = ω1⊕ω2 and still use coordinates (z1, z2), where z1 now extends
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from C to give a coordinate on the S2 = CP 1 factor. Still π1 and π2 denote

the projections onto the coordinate planes. Let F be the area of the first factor,

we suppose that this is sufficiently large that the complement of {z1 = ∞} can

be identified with a neighborhood of {|z1| ≤ 1} in C2, the identification pre-

serving the product complex and symplectic structures. In other words, from

now we assume that D ⊂ S2 ×C \ {z1 = ∞} and satisfies the conditions on its

cross-sections. Let Dc denote the complement of D in S2 ×C.

Now let φ : B(r) → D be a symplectic embedding. Then we consider almost-

complex structures J on S2 ×C which are tamed by ω and coincide with the

standard product structure on Dc. By now it is well-known, see [3], that for all

such J the almost-complex manifold S2 ×C can be foliated by J-holomorphic

spheres. In {|z2| ≥ M} the foliation simply consists of the S2 factors.

Let S denote the image of the holomorphic curve in our foliation passing

through φ(0). By positivity of intersections S intersects {z1 = ∞} in a single

point, say {z2 = b}. As above we will use polar coordinates (r, θ) in the plane

{z2 = b}. So we can write D ∩ {z2 = b} = {r ≤ c(θ, b) := c(θ)}. Let A =

area({z2 = b} ∩D). We intend to obtain lower bounds for both
∫

S∩Dc ω1 and
∫

S∩Dc ω2.

First of all, we will suppose that π1(S ∩ Dc) = {r ≥ g(θ)} for a positive

function g and that S ∩Dc is a graph {z2 = u(z1)} over this region. We explain

later how essentially the same proof applies to the general case. Recall that our

assumptions imply that t ≤ c(θ), g(θ) ≤ 1 for all θ. Define h(θ) = |g(θ)− c(θ)|.
Define a holomorphic function f : {r ≤ 1

g(−θ)} → {|z2| ≤ M} by f(z) =

u( 1
z ). Then f(0) = b and |f(z)| ≤ M for all z. Therefore composing f with a

translation we can redefine f as a function f : {r ≤ 1
g(−θ)} → {|z2| ≤ 2M} with

f(0) = 0.

As g(θ) ≤ 1 for all θ the map f restricts to one from {|z| ≤ 1} and so by

the Schwarz Lemma, if |z| < 1 we have |f ′(z)| ≤ 2M
1−|z| . On the boundary of the

disk, our assumptions on the boundary of D imply that |f( 1
g(−θ)e

iθ)| ≥ Kh(θ).
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Now we estimate
∫

S∩Dc

ω2 = area(image(f))

=
∫ 2π

0

dθ

∫ 1
g(−θ)

0

r|f ′(z)|2dr

=
∫ 2π

0

g(−θ)dθ

(∫ 1
g(−θ)

0

r|f ′(z)|2dr

) (∫ 1
g(−θ)

0

dr

)

≥ t

∫ 2π

0

dθ

(∫ 1
g(−θ)

0

r
1
2 |f ′(z)|dr

)2

.

Now ∫ 1
g(−θ)

0

|f ′(z)|dr ≥ Kh(θ)

and over all such functions |f ′(z)| the final integral above is minimized by taking

|f ′(z)| as large as possible for small values of r. We compute
∫ y

0

2M

1− r
dr = Kh(θ)

when y = 1− e
−Kh(θ)

2M < 1
g(−θ) . Therefore putting y = x2 we have

t

∫ 2π

0

dθ

(∫ 1
g(−θ)

0

r
1
2 |f ′(z)|dr

)2

≥ t

∫ 2π

0

dθ

(∫ x2

0

2M
√

r

1− r
dr

)2

= 4M2t

∫ 2π

0

dθ

([
−2
√

r + ln
(

1 +
√

r

1−√r

)]x2

0

)2

= 4M2t

∫ 2π

0

dθ

(
−2x + ln

(
1 + x

1− x

))2

≥ 4M2t

∫ 2π

0

4x6

9
dθ

for the final estimate using the fact that 0 < x < 1.

Now

x2 = 1− e
−Kh(θ)

2M ≥ (1− e−
1
2 )

Kh(θ)
M

since Kh(θ)
2M ≤ 1

2 .

Therefore
∫

S∩Dc

ω2 ≥ 4M2t

∫ 2π

0

4x6

9
dθ

4



≥ 16
9

(1− e−
1
2 )3

tK3

M

∫ 2π

0

h(θ)3dθ.

Next we compute
∫

S∩Dc

ω1 = F − 1
2

∫ 2π

0

g(θ)2dθ

= F −A− 1
2

∫ 2π

0

(g(θ)2 − c(θ)2)dθ

≥ F −A− 1
2

∫ 2π

0

(g(θ)− c(θ))(g(θ) + c(θ))dθ

≥ F −A−
∫ 2π

0

h(θ)dθ.

Therefore writing k = 16
9 (1− e−

1
2 )3 tK3

M we have
∫

S∩Dc

ω ≥ F −A−
∫ 2π

0

(h(θ)− kh(θ)3)dθ

≥ F −A− 2π
2

3
√

3k

= F −A− π

√
M

3(1− e−
1
2 )3tK3

.

Thus S∩D has symplectic area at most A+π
√

M

3(1−e−
1
2 )3tK3

< A+3
√

M
tK3 ,

since S itself has area F .

We assumed above that π1(S ∩ Dc) is starshaped about z1 = 0 and that

S ∩ Dc is a graph over this region. If the projection π1 : S → π1(S ∩ Dc) is

a branched cover then we can define a function f as before simply choosing a

suitable branch along the rays {θ = constant}. The proof then applies as before.

Now suppose that π1(S ∩ Dc) is not starshaped about z1 = 0. Then we find

the smallest possible starshaped set {r ≤ g(θ)} containing the complement of

π1(S ∩Dc). The defining function g will then have discontinuities but this does

not affect the proof which again proceeds as before.

Finally we choose a J which coincides with the push forward of the standard

complex structure on the ball B(r) under φ but remains standard outside D.

The part of S intersecting the image of φ is now a minimal surface with respect

to the standard pushed forward metric on the ball and so must have area at

least πr2, giving our inequality as required.
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3 Proof of Theorem 1

For any domain E ⊂ C2 we will write C(E) = supb area({z2 = b} ∩ E). Again

we let C = C(D). Arguing by contradiction suppose that B(r) → D is a

symplectic embedding with πr2 > C + ε.

Let B be the image of the ball of radius r in D. We will prove Theorem 1

by finding a symplectic embedding of B into (D1, ωL) for all sufficiently large

L, where D1 is a domain C0 close to D and with C(D1) < C(D) + ε. Such

embeddings would contradict Corollary 3.

First we choose a lattice of the z2 plane sufficiently fine that if we denote

the gridsquares by Gi then supi area(π1(D ∩ π−1
2 (Gi))) < C(D) + ε. Then we

let D1 =
⋃

i π1(D ∩ π−1
2 (Gi))×Gi, suitably smoothed.

Let {bj} be the vertices of our lattice. We make the following simple obser-

vation.

Lemma 4 Suppose that B ∩ {z2 = bj} = ∅ for all j. Then there exists a

symplectic embedding of B into (D1, ωL) for all sufficiently large L.

Proof It suffices to find a diffeomorphism ψ of C \ {bj} which preserves the

Gi and such that ψ∗(Lω0) = ω0, letting ω0 = dz∧dz be the standard symplectic

form. It is not hard to construct such a map, and the product of this map on

the z2 plane with the identity map on the z1 plane gives a suitable embedding.

Given Lemma 4, to find our embedding it remains to find a symplectic

isotopy of D1 such that the image of B is disjoint from the planes Cj = {z2 =

bj}. Equivalently we will find a symplectic isotopy of the union of the Cj ,

compactly supported in a neighborhood of B and moving the Cj away from B.

We may assume that the embedding of the ball of radius r extends to a

symplectic embedding of a ball of radius s where s is slightly greater than r.

Let U be the image of this ball and J0 the push-forward of the standard complex

structure on C2 to U under the embedding.

Lemma 5 There exists a C0 small symplectic isotopy supported near ∂U which

moves each Cj into a J0-holomorphic curve near ∂U .
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Proof Let (x + iy, u + iv) be local coordinates on C2. Let C be one of our

curves. We may assume that in these coordinates near to the origin C ∩ ∂U is

the curve {(x, 0, 0, 0)} and therefore that nearby C is the graph over the (x, y)

plane of a function h(x, y) = (u, v). So u = v = 0 when y = 0.

There exists a constant k such that |u|, |v|, |∂u
∂x | and | ∂v

∂x | are all bounded by

k|y| near y = 0.

Now, such a graph is symplectic provided

|∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
| < 1.

We can make C holomorphic near ∂U by replacing h by (χu, χv) where χ is

a function of y, equal to 0 near y = 0 and 1 away from a small neighborhood.

The resulting graph remains symplectic provided

|χ∂u

∂x
(χ′v + χ

∂v

∂y
)− χ

∂v

∂x
(χ′u + χ

∂u

∂y
)| < 1

or rewriting

|χ2(
∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
) + χχ′(v

∂u

∂x
− u

∂v

∂x
)| < 1.

If we assume that |∂u
∂x

∂v
∂y − ∂v

∂x
∂u
∂y | < 1− δ the graph remains symplectic if χ

is chosen such that

|χχ′(v
∂u

∂x
− u

∂v

∂x
)| < δ

which is guaranteed if χ′ < δ
ky2 .

Since the integral
∫ t

0
δ

ky2 dy diverges a function χ satisfying this condition

while being equal to 0 near 0 and 1 away from an arbitrarily small neighborhood

does indeed exist as required. The resulting surface is clearly isotopic through

symplectic surfaces to the original C.

We now replace the Cj by their images under the isotopy from Lemma 5.

We let J be an almost-complex structure on U which is tamed by ω, coincides

with J0 near ∂U , and such that the Cj ∩ U are J-holomorphic.

Now (U, J) is an (almost-complex) Stein manifold in the sense that it admits

a plurisubharmonic exhaustion function φ : U → [0, R). In fact, work of Eliash-

berg, see [1] and [2], implies that such a plurisubharmonic exhaustion exists
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with a unique critical point, its minimum. Generically this will be disjoint from

the Cj .

Near the boundary we can take φ to be the push-forward under the embed-

ding of a function |z|N
C for some integer N ≥ 2 (depending perhaps on U) and

(any given) constant C. The definition of a plurisubharmonic function states

that ωφ = −ddcφ is a symplectic form on U which is compatible with J (for a

function f we define dcf := df ◦ J). We can choose C such that ωφ|∂U = ω|∂U

and thus by Moser’s lemma the symplectic manifolds (U,ω) and (U,ωφ) are

symplectomorphic via a symplectomorphism F fixing the boundary. In fact,

adjusting the isotopy provided by Moser’s method we may assume that F fixes

the Cj (since they are symplectic with respect to both ω and ωφ). Let V denote

the image of U \B under F and suppose that {φ ≥ R0} ⊂ V .

It now suffices to find a symplectic isotopy of the Cj in (U,ωφ) moving the

surfaces into the region {φ ≥ R0}. Then the preimages of these surfaces under

F gives a symplectic isotopy moving them away from B as required.

Let Y be the gradient of φ with respect to the Kähler metric associated to

φ. Equivalently Y is defined by Y cωφ = −dcφ. Define χ : [0, R) → [0, 1] to have

compact support but satisfy χ(t) = 1 for t ≤ R0. Then the images of the Cj

under the one-parameter group of diffeomorphisms generated by X = χ(φ)Y

will eventually lie in {φ ≥ R0}. Thus we can conclude after checking that they

remain symplectic during this isotopy. We recall that the Cj are J-holomorphic

and finish with the following lemma.

Lemma 6 Let G be a diffeomorphism of U generated by the flow of the vector-

field X. Then G∗ωφ(Z, JZ) > 0 for all non-zero vectors Z.

Proof For any function f we compute

LXf(φ)dcφ = f ′(φ)Xcdφ ∧ dcφ + f(φ)Xcddcφ + d(f(φ)Xcdcφ)

= (f ′(φ)dφ(X) + f(φ)χ(φ))dcφ.

Thus G∗dcφ = g(φ)dcφ for some function g and

G∗ωφ = g(φ)ωφ − g′(φ)dφ ∧ dcφ.
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The function g is certainly positive and so G∗ωφ evaluates positively on the

(contact) planes {dφ = dcφ = 0}. Therefore if G∗ωφ evaluates nonpositively on

a J-holomorphic plane then there exists such a plane containing Y . But this

is clearly not the case, as G∗ωφ(Y, JY ) = ωφ(G∗Y, G∗JY ) = −kdcφ(G∗JY ) for

some positive constant k and −dcφ(G∗JY ) = −G∗dcφ(JY ) = g(φ)dφ(Y ) > 0.
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