C7 Pre-Lab Assignment

Please refer to the lab handout for the following questions. Express your answers as algebraic equations written on a separate sheet of paper, and show your work. Then, transcribe the equations into your lab notebook.

1. Consider a pendulum with zero applied torque $\tau=0$.
a. Sketch the solution $\theta(t)=e^{-\lambda t} \sin \left(\omega_{d} t\right)$ to Eq. (1) of the handout.
b. Describe an experimental method to measure λ. (Hint: Think back to the baseball bat or pendulum in Lab I.)
2. Consider a pendulum at rest at some desired angle or "set-point" θ_{s}. Derive an equation for the applied motor torque τ_{S} necessary to maintain that angle.
3. Write the function $m g R \sin (\theta)$ as a first order Taylor series expansion about the point $\theta=\theta_{s}$.
4. Write an approximate version Eq. (1) of the handout using the first order Taylor series you just derived.
5. Express the equation of motion as a linear system of first order differential equations using the new variable substitution $\dot{\theta}=\omega$ and $\ddot{\theta}=\dot{\omega}$.
6. Tie it all together now: Rewrite the linear system of differential equations in LQR form $\dot{x}=A x+B u$ where $x=\left[\begin{array}{c}\theta-\theta_{S} \\ \omega\end{array}\right]$ and $u=\tau-\tau_{S}$. In particular, what are A and B in terms of m, g, R, and γ ?
7. Develop an LQR controller for a pendulum with $R=0.15 \mathrm{~m}, m=0.05 \mathrm{~kg}, \lambda=0.7 \mathrm{~s}^{-1}$, and a set point $\theta_{S}=30^{\circ}$.
a. The motor we will use in lab has a limit on how much torque it can output. Look at the torque-speed curve for the motor in Appendix C. What is the maximum torque output $\tau_{\max }$?
b. Write down expressions for the LQR weights \mathbf{Q} and \mathbf{R} in terms of maximum angular displacement $\Delta \theta_{\max }$, maximum angular speed $\omega_{\max }$, and maximum motor torque $\tau_{\max }$.
c. Use the lqr() method in Matlab to calculate the gains k_{p} and k_{d} (units of $\mathrm{Nm} / \mathrm{rad}$ and $\mathrm{Nms} /$ rad, respectively) for a setpoint $\theta_{s}=\pi / 4=45^{\circ}$, a maximum angular displacement $\Delta \theta_{\text {max }}=0.087 \mathrm{rad}=5^{\circ}$, and a maximum angular speed $\omega_{\max }=$ $0.2 \mathrm{rad} / \mathrm{s}$. Save the script in your code library. You will need it in lab.
