For the following questions, please express your answers as algebraic equations written on a separate sheet of paper, and show your work. Then, transcribe the important equations into your lab notebook.

1. Refer to Figure 1 of the lab handout for the following questions. Assume both tanks have the same cross sectional area A_{T}.
a. Use conservation laws (rate balance for the volume of water) to derive a system of differential equations for the height of the water in each tank, h_{1} and h_{2}. Use Poiseuille's Law $p=R Q_{\text {out }}$ and the hydrostatic pressure $p=\rho g h$ to determine the flow rate out.
b. If the tanks are identical and both outlet nozzles are the same $\left(R_{1}=R_{2}=R\right)$, derive an equation for the time constant τ in either tank in terms of R, ρ, g, and the cross-sectional area of the tank $A_{T}=\pi r^{2}$.
c. Derive an equation for the steady-state equilibrium height for the top tank $h_{1 S}$ in terms of S, τ, and tank area A_{T}.
d. If the tanks are identical and both outlet nozzles are the same $\left(R_{I}=R_{2}=R\right)$, derive an equation for the steady-state equilibrium height for the bottom tank $h_{2 S}$ in terms of $h_{I S}$. What are the implications for controlling the system?
e. Derive an equation for flow rate S_{s} that yields an equilibrium height $h_{I S}$.
f. Express the governing equations derived in problem 1a in state space form $\dot{x}=A x+B u$ where $x=\left[\begin{array}{l}h_{1}-h_{1 S} \\ h_{2}-h_{2 S}\end{array}\right]$ and $u=S-S_{s}$. In particular, what are A and B in terms of A_{T} and τ ?
g. Use the lqr() method in Matlab to calculate the optimal gains $k_{p 1}$ and $k_{p 2}$ (in units of $\mathrm{in}^{2} / \mathrm{s}$) for identical tanks, both with a diameter $D=5 \prime$. Both tanks have a maximum allowable error of $\Delta h_{\max }=0.5 \mathrm{in}$. The pump has a max flow rate $S_{\max }=15 \mathrm{in}^{3} / \mathrm{s}$. Each tank has a characteristic time constant $\tau=6 \mathrm{~s}$ for draining.
2. Refer to Figure 2 of the lab handout for the following questions. Assume both tanks have the same cross-sectional area A_{T}. However, we will allow both tanks to have different nozzles, such that the flow resistances $\boldsymbol{R}_{1} \neq \boldsymbol{R}_{2}$.
a. Similar to Part 1, use conservation laws (rate balance for the volume of water) to derive a system of differential equations for the height of the water in each tank, h_{1} and h_{2}.
b. Derive an equation for the time constant τ_{l} for Tank 1 in terms of R_{l}, ρ, g, and the cross-sectional area of the tank A_{T}.
c. Derive an equation for the time constant τ_{2} for Tank 2 in terms of R_{2}, ρ, g, and the cross-sectional area of the tank A_{T}.
d. Derive an equation for the steady-state equilibrium height $h_{l S}$ for Tank 1 in terms of S_{l}, τ_{l}, and A_{T}.
e. Derive an equation for the steady-state equilibrium height $h_{2 S}$ for Tank 2 in terms of $S_{2}, h_{I S}, R_{2}, \rho$, and g.
f. Assuming $h_{1 S}, R_{1}, R_{2}, \rho$, and g are constant, derive an equation for the minimum equilibrium height for $\operatorname{Tank} 2, \min \left(h_{2 S}\right)$.
g. For a larger range of allowable equilibrium heights $h_{2 S}$, do you want $R_{2} \ll R_{l}$ or $R_{2} \gg R_{l}$.
h. Derive an equation for the flow rate $S_{I S}$ necessary to maintain an equilibrium height $h_{S l}$ in terms of only the variables A_{T}, τ_{1}, and $h_{I S}$.
i. Derive an equation for the flow rate $S_{2 s}$ necessary to maintain an equilibrium height $h_{2 S}$ in terms of only the variables $A_{T}, \tau_{1}, \tau_{2}, h_{I S}$, and $h_{2 S}$.
j. Express the governing equations derived in problem 2 a in state space form $\dot{x}=A x+B u$ where $x=\left[\begin{array}{c}h_{1}-h_{1 S} \\ h_{2}-h_{2 S}\end{array}\right]$ and $u=\left[\begin{array}{c}S_{1}-S_{1 S} \\ S_{2}-S_{2 S}\end{array}\right]$. In particular, what are A and B in terms of A_{T}, τ_{1}, and τ_{2} ? (Note: A and B will both be 2×2 matrices.)
k. Use the lqr() method in Matlab to calculate the optimal gains $k_{p 1}$ and $k_{p 2}$ (in units of in ${ }^{2} / \mathrm{s}$) for identical tanks, both with a diameter $D=5 "$. Tank 1 has a maximum allowable error $\Delta h_{1 \max }=1 \mathrm{in}$., and Tank 2 has a maximum error $\Delta h_{2 \max }=0.1$ in. The pumps have max flow rates $S_{1 \text { max }}=15 \mathrm{in}^{3} / \mathrm{s}$ and $S_{2 \text { max }}=10 \mathrm{in}^{3} / \mathrm{s}$. The tanks have characteristic time constants $\tau_{1}=6 \mathrm{~s}$ and $\tau_{2}=2 \mathrm{~s}$ for draining.
3. Assume the flow rates are linearly related to the duty cycle for both pumps, such that $S_{I}=a_{l}\left(\% \mathrm{PWM}_{1}\right)+b_{I}$ and $S_{2}=a_{2}\left(\% \mathrm{PWM}_{1}\right)+b_{2}$. Take Eq. (6) in the handout, and use these calibration equations to replace S_{1} and S_{2} with $\% \mathrm{PWM}_{1}$ and $\% \mathrm{PWM}_{2}$. (i.e. Repeat what was done in Eqs. (1) - (4) in Part I of the handout.)
