For the following questions, please express your answers as algebraic equations written on a separate sheet of paper, and show your work. Then, transcribe the important equations into your lab notebook.

1. Use a conservation law (rate balance for the volume of water) to derive a differential equation for the height of the water in the tank. Use Poiseuille's Law $p=R Q_{\text {OUT }}$ and the hydrostatic pressure $p=\rho g h$ to determine the flow rate out. Assume the flow rate in $Q_{I N}=S$, where S is some constant flow rate provided by the pump.
2. Derive an equation for the time constant τ in terms of R, ρ, g, and the cross sectional area of the tank A_{T}.
3. Consider the "quiescent" mode where the tank is at steady state (i.e. the fluid height is not changing). Derive an equation for the flow rate S_{s} that yields a desired equilibrium height h_{s} in terms of only the variables A_{T}, τ, and h_{s}.
4. Use the definition of the LQR variables $x=h-h_{s}, u=S-S_{s}$ to show that $u=-k_{p} x$ and Eq. (3) are equivalent expressions.
5. Using your previous answers, show that Eq. (4) is equivalent to the governing differential equation from problem 1 , if $x=h-h_{s}, u=S-S_{s}, A=-1 / \tau$, and $B=1 / A_{T}$.
6. Use the $\operatorname{lqr}()$ method in Matlab to calculate the optimal gain k_{p} (in units of $\mathrm{in}^{2} / \mathrm{s}$) for a tank with a diameter $D=5 \mathrm{in}$. and height $h_{\max }=10 \mathrm{in}$. The pump has a max flow rate $S_{\max }=15 \mathrm{in}^{3} / \mathrm{s}$. Draining the tank has a characteristic time constant $\tau=6 \mathrm{~s}$. Use $\boldsymbol{Q}=1 /\left|h_{\max }^{2}\right|$ and $\boldsymbol{R}=1 /\left|S_{\text {max }}^{2}\right|$ for the LQR weights.
