University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

Experiment M6
Robot Leg Part I (a.k.a., DC Motor Control)

Procedure

Lab objectives: After completing this lab, students should be able to:

1. Tune a PID controller based on experimental outcomes.

Identify the electrical parameters of a DC motor model from experimental data.
Implement a feedforward controller for current with a DC electric motor.
Employ multi-rate control systems to simplify the control of complex systems.
Identify the physical parameters of a DC motor model from experimental data.

SRR AN Sl

Apply knowledge of second-order systems to analyze the behavior of dynamic systems.
7. Alter the physical characteristics of a mechanical system through feedback control.

Overview:

In this lab, we will learn to control the behavior (broadly defined) of a DC electric motor
model. A diagram of our DC electric motor is given below. The motor is given a voltage
input V. This voltage produces current I in the motor, which places torque 7 on the motor
shaft, and then causes a change in the output angle 6 of the motor.

In Part 1, we will first look at how to control the output angle of the motor directly, by
programmatically setting the voltage input based on a Proportional Integral Derivative (PID)
controller. If we want to control the angle of the output, this control strategy is a great option.

However, if we want to control the physical feel of the output (e.g., how stiff it is to a user
that may come in contact with it), then the above doesn’t do the job. To change the physical
characteristics at the output (stiffness and damping), we will proceed through three main
steps (Parts 2-4). In Part 2, we will run experiments to identify an electrical model of the

R
+ 1 + 0, 7m 2
[
Vv ‘/ernf (l Text
U

— _ kv

Figure 1: Model of DC motor with input voltage V', winding resistance /7, current I, back-
EMF voltage V¢, output angle 6, motor torque 7,,, viscous friction coefficient k,, rotational
inertia .J, and external torque 7ey.

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (1/16) Revision: February 19, 2024

University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

motor by looking at the relationship between input voltage and measured current. This model
will then allow us to control the current flowing through the motor, which is proportionally
related to the motor torque.

Once we can control the torque on the motor shaft, in Part 3, we will then run experiments
to identify the physical model of the motor (i.e., to identify the rotational inertia of the
motor and the damping on the motor shaft). Finally, in Part 4, we use this information to
programmatically change how stiff or damped the motor shaft will feel to the user. That is,
even without a spring attached to the motor shaft, we will be able to make a user feel like a
spring is present, and we’ll be able to adjust how stiff it feels.

Throughout, we will denote physical parameters (that we can’t control) in purple (e.g., ./, k),
our estimates of them in blue with hats (e.g., J, k;), and user-selected tuning parameters in
green (e.g., IV, K;).

In the next lab, we’ll build on this to adjust how stiff a multi-jointed leg feels at the its foot.
Deliverables: Checked score sheet. Other deliverables listed at the end of each part.

Part 0. Getting Started

The Arduino family that we have been using until now provided a wide variety of user
friendly micro-controller platforms to easily prototype mechatronic systems with minimal
required knowledge. However, to accomplish our tasks in the following experiments, we need
a more powerful platform with higher CPU frequency for fast math calculations and advanced
connectivity options to transfer more data.

In this experiment, we will use a far superior micro-controller platform: FRDM-K64F (pro-
nounced freedom) which is equipped with a 120MHz ARM CPU (same architecture as your
phone) and an Ethernet port. We will take a few steps to familiarize ourselves with the new
platform.

1. Locate your code library that you created in the first experiment on the desktop:
AME30358_YourNames. Create a sub-directory and name it as M6-M7. We are going
to put all local files from M6 and M7 in this folder.

2. If you are unfamiliar with C++, take a few moments to familiarize yourself with some
of the available documentation.

e Tutorial: http://www.tutorialspoint.com/cplusplus/index.htm
e Reference: http://www.cplusplus.com/reference

3. You should have your Keil Studio Cloud (hereinafter ‘Keil’) account created during the
pre-lab quiz. Open Keil and log in with your account at https://studio.keil.arm.
com/auth/login/.

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (2/16) Revision: February 19, 2024

http://www.tutorialspoint.com/cplusplus/index.htm
http://www.cplusplus.com/reference
https://studio.keil.arm.com/auth/login/
https://studio.keil.arm.com/auth/login/
https://studio.keil.arm.com/auth/login/

University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

: X
>
&> &
>
freescale Enabled
FRDM-K64F

Arduino Headers CPTEZ4

ADC1_SE18 SDa 2C 2 soa | | PTEZS
N.C. AREE
ADCL_DWD GMND
ADCL_DPO 4 A PTO1

— | o
NiC PTD3
ADCU_D!\?- T PTD2
ADCO_CPD PFTOO
PTCY
| PTAD

Figure 2: FRDM-K64F micro-controller (the outer rows are compatible with Arduino UNO).

4. Create new project with template
(a) Create a new project through File — New — Mbed Project

(b) Choose the mbed-os-example-blinlky template. (Change the project name with
your preference is welcomed but not required.)

(¢) Keep the Make this the active project selected

(d) For this test, we don’t need the Git repository. Please uncheck the item Initialize
this project as a Git repository.

(e) Click the Add project button to create. Review the example code.
5. Add FRDM-K64F to the build target (Click build target on the left, then search).

6. Connect the FRDM-K64F controller board to your computer through the right micro-
USB port on board as shown in Fig. 2.

7. Verify that a flash drive named FRDM-K64F shows up within your file explorer.

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (3/16) Revision: February 19, 2024

University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

8. Navigate back to Keil, and flash program to controller via download

(a) Compile code using the Build button (hammer @) — this will download a com-
piled binary file to your computer.

(b) Download the generated binary file by dragging it from download folder to FRDM-K64F
flash drive. If a new “AutoPlay” window shows up, it means the file was success-
fully flashed.

(¢) In order to make sure the new code is running, press reset on FRDM board (the
button next to the USB port used to connect the device).

9. Verify that the red LED is blinking. If so, the flashing process worked successfully.

10. Change the BLINKING RATE MS in main.cpp file so that the LED is blinking in 0.5Hz.
Flash the program to the controller following the instruction above. Demonstrate
the working result to the lab instructor to obtain points on the score sheet.

0J8002
©2014
@ cno
@ vout
@® voD
@ MEN

@ MIINA

@ MiINE

@ MIPWM iy
@® mics M
@ M2EN

=
=
o
==
e
| ! ™.
@® M2INA it 8 EE
@ M2INB ‘ =
ARD IN
] MZFWM =VOUT" RsT 3vs voo

@ m2cs wwwpalo!u com @00 @ @

Figure 3: (a) Pololu dual VNH5019 motor driver shield for Arduino, (b) ACS711EX Current
Sensor.

Color Function
Red Motor power
Black Motor power

Green Encoder GND
Blue Encoder Vce (+5V)

Yellow Encoder A Out
White Encoder B Out

Figure 4: 12V DC Motor with 18.75:1 gearbox and encoder pinout.

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (4/16) Revision: February 19, 2024

University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

Part 1. DC Motor Setup & Position Control

1. Measure the winding resistance of the motor using DMM (measure across red and black
wires on the motor). It should be a few Ohms. Record the value in your lab notebook.

2. Wiring with Dupont pin wires.

(a) Put the motor drive shield (Fig. 3(a)) on the FRDM board. Note that the shield
is designed for Arduino UNO and FRDM board has compatible pinouts.

e Further documentations can be found in appendix

(b) Connect the analog current sensor (Fig. 3(b)) and the motor to the FRDM /shield
assembly following the instruction of Fig.5. The sensor output connects to pin
“A2” on the FRDM board.

(c) Connect the single motor on your test bench and its encoder (Fig. 4) to the
FRDM /shield assembly as well.

(d) Finally connect the power input port on motor shield to the power supply (the
charging brick) through the inline kill switch. Make sure the power is turned
off while you connect it!

Reset Button

OVIAQ/NIZN

L OJlaNIZN

& Ol vNIZW
=) OfOVIAQ/NILN
S OfaNILN

C
R‘JOIVNII»W

ofjwmden
2 O NMd LN

OOOEO®O

USB
#

=
N
=
=)

Ethernet
#

Motor +

Motor -
Encoder GND

lllll L > Vee - 3 Encoder Vcc
lllll amE ©) Encoder A

Encoder B

Figure 5: Wiring diagram.

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (5/16) Revision: February 19, 2024

University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

3. Import Base Code for Motor Interface
(a) Clone the motor interface base code from github through File — Clone....

i. Copy and paste the url https://github.com/ND-AME-31358/MotorInterfaceBase
into the URL box in the popup window. Keep the Project name or choose a
reasonable one.

ii. Make sure to check Make this the active project or manually set it active after
import. Click Add project button to clone.

(b) Select the FRDM-K64F as the build target again as in Part 0. Step (5). Keil would
frequently demand manual adjustment of the target board settings, often following
a project import and occasionally after altering the active project.

(c) Take a few moments to familiarize the main.cpp example code, enter the corre-
sponding pin name for motor control and current sensor to the code block line
34-43.

(d) Flash the code to the FRDM board. Sometimes red LED on board would blink
to indicate the flashing is done and demand reset.

(e) Next we will connect a debugging interface via serial.

i. Open the device manager by searching in the start menu. Check the enumera-
tion names under the WPorts (COM & LPT) category. Write down the COM
number (e.g. COM16) with the name mbed serial in your lab notebook.

ii. Open the serial monitor application PuTTY, select the Serial checkbox. Enter
the COM number you got and enter 115200 as the baud rate. Click open.

iii. By pressing the reset button on the FRDM board, you should be able to see
the messages from FRDM board. Confirm the message as

Starting Server
...Intializing Ethernet
...Connecting

4. Interface with MATLAB

(a) Data from the FRDM board will be sent to the computer via an Ethernet connec-
tion, so it can be viewed in real time via M ATLAB.

(b) Connect the FRDM board and your computer through the Ethernet cable and the
USB-Ethernet adapter. Ask the lab instructor to confirm the Ethernet connection
is configured as follows:

IP Address: 192.168.1.200

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (6/16) Revision: February 19, 2024

https://github.com/ND-AME-31358/MotorInterfaceBase

University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

Subnet mask: 255.255.255.0
Router/Gateway: 192.168.1.1

Now navigate back to serial monitor in PuTTY, press the reset button on the FRDM
board and wait for a moment. New Experiment message as detailed below should
appears. Once you confirm the message Waiting for parameters.. ., the board
would be ready to communicate with MATLAB. A green LED on board would
light up at the same time to indicate it is ready.

Starting Server
..Intializing Ethernet
...Connecting
. .Ethernet IP Address is 192.168.1.100
. .Opened
..Listening on Port 11223

New Experiment
...Waiting for parameters...

Note: this message and the green LED only indicate the UDP service we used to
transport data is ready. If the IP address in last step was not properly configured,
no data would be successfully transported in the following steps.

Download or copy the RunExperiment.m file from the RunExperimentMatlab folder
within your Keil project onto your computer. Ideally, you should copy this file to
your experiment folder from Part 0. Step (1). This file contains a base function
shared by all MATLAB scripts in this experiment.

Download the ApplyVoltage.m code from the Keil project to the same folder, and
open it in MATLAB.

DO NOT turn on the power supply. Run ApplyVoltage.m on your machine. A
plot includes motor current (should be 0 amps) and encoder readings should pop
up in MATLAB. Please turn the motor roughly 180 degrees and verify it on the
plot. Demonstrate the working result to the lab instructor for credit.

5. Current sensing

(a)

Navigate back to Keil, fix the current measurement code at line 99 of main.cpp by
typing in the calibration equation from pre-lab quiz so that the variable current
gives the sensed current, measured in amps. Note the following:

e The current sensor output sensitivity is 90 mV/A for our setup where the
current sensor is connected to a 3.3V pin of the microcontroller.

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (7/16) Revision: February 19, 2024

University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

e Also note that since the current sensor is bidirectional, a 1.65V output (half
of 3.3V) represents 0 current. Higher than 1.65V means positive current and
lower means negative current.

e The sensor voltage [0.0V,3.3V] is mapped to [0.0,1.0] as the CS variable in
the code.

e Tip: add a ‘£’ after each number or a decimal point to ensure C++ consider
it as a float number (e.g. 3f, 3.0, or both 3.14f).

(b) Now connect and turn on the power supply to 12V. Run ApplyVoltage.m again,
the motor should now rotate under default voltage: 3V. Demonstrate the work-
ing result to the lab instructor for credit.

6. Closed-loop motor control (PID)

(a) Import the template PID control code by cloning (“Ctrl+Alt+M”) from https:
//github.com/ND-AME-31358/K64F_PID_Control as above.

(b) Set the build target to the FRDM-K64F board as Part 0. Step (5).

(c) Take a few moments to familiarize yourself with the main.cpp file (particularly the
line 79 to 115).

(d) In main.cpp, complete the code on lines 40-43 and line 101 for the pin assignment
and calibration formula using your code from the previous parts.

(e) Using this interface, modify the line 114 of main.cpp in the Keil code for the
FRDM board to implement a proportional-integral-derivative (PID) controller for
the motor shaft angle.

e As controlled by line 128, we are running under control loop rate of 1 KHz.

e Given a shaft angle 0[k] at time step &, a desired angle 6, and angle velocity 04,
the error e[k| = 04— 0[k]|, élk] = 04— 0[k| should be related to the commanded
voltage through:

VK] = K, e[k] + Ky é[k] + K) elf]

J=0

e For your information on later steps: In your program, it uses:

Inputs to FRDM board: 6,4, 9d, K,, K;, K4, Experiment Time
Outputs from FRDM board: t[k], 0[k], 6[k], V[k], I[k]

(f) To run an experiment, you should first flash the FRDM board with your code.

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (8/16) Revision: February 19, 2024

https://github.com/ND-AME-31358/K64F_PID_Control
https://github.com/ND-AME-31358/K64F_PID_Control

University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

(g) Similarly, download the K64 PID matlab.m file included in the project to your
computer, open it, take a few moments to familiarize yourself with it. Then run
K64 PID matlab.m on your computer. The same plots as in the previous step will
appear, with the addition of the desired position being displayed as a red line.

(h) Once working, and without tuning the gains in the MATLAB script, provide a
graph of your closed-loop step response, showing position, velocity, voltage input,
and current of motor over time.

(i) Now, tune the gains in the MATLAB script so that the position of the motor reaches
a desired position of 1 radian in under 150 milliseconds, with overshoot less than
0.05 rad. Guidelines are given below. Demonstrate the working result to
the lab instructor for credit.

e You should start by tuning /,, starting from a small value and increasing
as you make better guesses. Note that A, has units of volts per radian, so
you can come up with a reasonable initial guess by considering how many
volts of input you would want to apply for 1 radian of angle error. You
should increase /1, until the response starts to display significant oscillations.
(For this system, increasing /&, directly increases the natural frequency of the
response.)

e After tuning /A ,, you can increase /i, to remove oscillations. The constant
K4 has units of volts per rad/s. Based on the magnitude of velocities you are
observing, and the fact that the voltage is limited to 12V, you should be able
to make a reasonable guess to begin. If the motor moves too slow, you can
decrease K. If it still displays oscillations, you should increase K ;. (For this
system, increasing /A, directly increases the damping ratio of the response.)

e After tuning, you can continue to iterate between tuning /', and /& ; to further
improve response. If you observe steady-state error once the motor settles,
then you can increase /A; to remove it.

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (9/16) Revision: February 19, 2024

University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

Part 2. Electrical Model and Current Control
Consider the DC motor electrical dynamics equation
b+ RI+ LI =V (1)

where £, 9, R, I, L,V are back-EMF constant, angular velocity, winding resistance, winding
inductance, and armature voltage (applied motor voltage). Assume the winding inductance
is negligible (L =~ 0), we are going to estimate other constant parameters of the DC motor.

1. Resistance identification

(a) In Keil, set the MotorInterfaceBase project to active, make sure the FRDM-K64F
board is the build target, and flash the program to the FRDM board again.

(b) Now, you can run the command ApplyVoltage(volt) to apply volt to the motor.

(c) Run experiments with a number of voltage values from 3 to 12 V, while holding
the motor in different stall positions such that # = 0. (Hold tight.) Record the
data of each time.

e Note that the current sensor is not accurate under 1A so we start from 3V.

~

(d) Based on Eq. (1), with # = 0 and L = 0 estimate the winding resistance R
from your experimental values. Record the value in your lab notebook. Does the
estimated resistance match the value you measured via a DMM in Part 1. Step (1)?
Show your estimated resistance to the lab instructor for credit.

2. Back-EMF identification

(a) Run experiments with a number of voltage values from 3 to 12 V again, but let the
motor be free spinning (not stall) this time. Record a table in your lab notebook
with a column for applied voltage, a column measured speed, and a column for
measured current.

(b) Similarly, based on Eq. (1), estimate the back-EMF ko, from your experiments
using measured values [/, 6 and estimated 7.

(c) Show your estimated l, to the lab instructor for credit. Make sure the
units are correct.

3. Current Control: we will now use the parameters R and /jcb to create a feedforward /feed-
back controller.

(a) Import the template current control code by cloning from https://github.com/
ND-AME-31358/K64F _Current_Control as cloning procedure above.

(b) In the main.cpp file, the code shares similarities with previous sections, but in-
troduces a new function named currentLoopFunc, defined in line 138-164. This

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (10/16) Revision: February 19, 2024

https://github.com/ND-AME-31358/K64F_Current_Control
https://github.com/ND-AME-31358/K64F_Current_Control

University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

function implements the current controller and is invoked by a ticker, which is
configured in line 110.

Again, in main.cpp of your new project, complete the code on lines 40-43 and line
148 for the pin assignment and current sensor calibration formula using your code
from the previous parts.

Consider a desired current I;. Complete the code at line 159 of the proportional
current controller in the main.cpp file to match the formula below:

V=RI; +k0+ K, (I - 1)

The constant /', here has units of volts per amp, and should be a different value
from what you used in the previous PID control of the motor angle. Note that
this current controller is set up to run at a rate of 5kHz.

Flash the code to the FRDM board. Rest the board if necessary.

Download the K64 _Current Control matlab.min the project and open with MAT-
LAB. Set the variables R.motor equals to the parameter you estimated (leave kb
equals to zero). Note that this script plots the desired current as a red line in the
figure.

Conduct experiments to test the current control while again holding the motor
such that § = 0. Tune K. Once satisfied, provide a step response for two different
currents (one positive, one negative). Record the error on your lab notebook.

Investigate how your controller performs when you do not hold the output (i.e.
when 0 # 0). Sketch the current v.s. time in your lab notebook. Write
down the steady state value of the current.

Set the variable kb equals to the parameter you estimated so that we have the back-
EMF compensation. Sketch the current v.s. time in your lab notebook.
Write down the steady state value of the current. Demonstrate the
results to the instructor.

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (11/16) Revision: February 19, 2024

University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

Part 3. Mechanical Model and Friction compensation

Counsider the mechanical model of a DC motor:
ord + Tows = JO + k0, (2)

where torque constant %, has the same numeric value as the back-EMF k;, when adopting
standard metric units, k&, and J are the viscous friction coefficient (Nm/rad-s™!) and rota-
tional inertia (Nm/rad-s™2), respectively. We consider the output torque 7o = 0 when the
motor is free spinning.

We will build from the results of the previous section, where the current controller was
running at 5kHz (electrical dynamics are fast!) and now will include an outer controller for
the physical dynamics (the mechanical dynamics here are slower) with the block diagram
given below.

K, D —| e LI comen LV
@ , @ 1,0,6
6,0
Figure 6: Multi-rate control diagram.
1. Setup

(a) Clone the template code from https://github.com/ND-AME-31358/Impedance_
Control_1Dof.git. You will use this code for both this section and next section
”Impedance Control”.

(b) Again, in main.cpp of your new project, complete the code on lines 40-43; line
165, and line 181 for the pin assignment, calibration formula, and current control
using your code from the previous parts. Note that we have introduced an integral
control term in the current controller, please leave it untouched.

(¢) Download the file K64_Impedance Control matlab.m to your MATLAB folder.
(d) Take a moment to familiarize yourself with both pieces of code.

(e) With this example, MATLAB will send over a set of parameters to the FRDM
board as follows:

e [?: Estimated motor resistance (ohms)
e i, Estimated back-EMF constant (V/rad-s~')

e /{,: Proportional gain for current control (V/A)

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (12/16) Revision: February 19, 2024

https://github.com/ND-AME-31358/Impedance_Control_1Dof.git
https://github.com/ND-AME-31358/Impedance_Control_1Dof.git

University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

e /{;: Integral gain for current control (V/A-s)

e /,: Estimated viscous friction coefficient (Nm/rad-s™!)
e /: A virtual stiffness parameter (Nm/rad)
e D: A virtual damping parameter (Nm/rad-s™!)

e texp: Time to run the experiment (s)

Note: Please fill in your estimated results of the blue variables above to the MAT-
LAB script. The gains for the current controller are already tuned properly, so,
it is not necessary to modify them. You will need to tune the stiffness A and
damping D parameters later in Part 4.

(f) In response, the FRDM board will send the following pieces of information back
to MATLAB with an addition of desired current for plotting.

t: Time (s)
0: Angle (rad)

f: Angular velocity (rad-s)
V: Voltage (V)

I: Current (A)

e [4: Desired current (A)

2. Viscous friction identification: we will use feedback on the measured angle data to
create an artificial spring torque. Thus the system will behave as a damped harmonic
oscillator, and the viscous friction coefficient %, can be determined from the damping
ratio.

(a) Assuming an ideal current controller, we will first attempt to identify the viscous
friction coefficient k.

(b) Note that using standard units, &, = k,;. We can achieve a desired output shaft
torque 74 by setting iy = 74/k;, for the current controller.

(c) If we assume exact tracking for a desired output shaft torque 74, and we set
Ta = — K60 + k, 0, then the physical angle will follow the differential equation:

JO+ (ky—hk)0+K0=0

(d) Recall that any differential equation of the form:

Ajj+ By + Cy =0

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (13/16) Revision: February 19, 2024

University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

will have a solution of the form:
y(t) = Co et cos (wat + &)

for some constants C and ¢, where w,, = y/C/A is the natural frequency, ¢ = %

is the damping ratio, and wy = w,+/1 — (? is the damped natural frequency.

Note that when we set /;:L. = k,, the damping ratio will be zero, and the natural
frequency will be w,, = /K /J.

With this in mind, modify your C++ code and conduct an experiment as follows:

e Check the line 125-130 and verify that it will set the desired current for your
current controller to achieve the desired torque 7, = — K60 + k, 6.

e Flash the program to the FRDM board.

e In MATLAB, set the R .motor and kb equal to parameters you estimated. Keep
the current controller gains A, and /{;. Then firstly tune /i so that you
observe an oscillation of a frequency of roughly 2Hz while k, = 0. Tip: You
would need to physically interact the system by pushing the link about 1-2 rad
to trigger the oscillation.

e Then, increase k, until you observe a pure undamped sinusoid for f(¢). Once
you have that, the value of k&, gives an estimate for %,. Use the oscillation
period T of the response to estimate the motor inertia .J via:

2

T

= Wy.

Write down the estimated values k, and J in your lab notebook.
Show them to a lab instructor for credit.

Part 4. Design Challenge: Impedance Control

We will now tune the full system to have a fast mechanical response without overshoot and
oscillation. Note that the current control loop will be nested in the mechancial control loop,
running at a much faster rate.

1. Let us consider the case when 7y = —K 6 — D6 + k, 9, then, if all parameter estimates
are ideal:

JO+ DO+ KO =1y

2. That is, we can implement a virtual spring A (units Nm/rad) and damper D (units
Nm/rad-s7!) at the output.

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (14/16) Revision: February 19, 2024

University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

3. Modify on your code at line 126-127 of main.cpp within Keil Studio so that it produce
the torque as 7y =—-K 60— D0+ k,0.

4. Make different selections of A and D and interact with your closed loop controller.

5. Fix a selection of /X'. Without experiments, make selections for D that passively would
correspond to an underdamped, critically damped, and over damped system.

6. Test these selections and provide a graph of the position over time for each. Do they
behave as expected? If not, offer suggestions about what may be the cause of the
inconsistency. Demonstrate the results of your experiment and discuss your
findings with a lab instructor for final sign off.

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (15/16) Revision: February 19, 2024

University of Notre Dame Aerospace and Mechanical Engineering
AME 30358 - Mechatronics Lab Spring 2024

A. List of Equipment

1.
2.

© w0 N o o

12V DC power supply with kill switch
FRDM-K64F micro-controller https://os.mbed.com/platforms/FRDM-K64F/

Note: All FRDM boards in this lab have been properly flashed with the latest firmware
and bootloader. Please follow the instruction on the production page to update the
firmware and bootloader if you are going to connecting a brand new board to a Windows
machine. Otherwise, some storage service in Windows might ‘brick’ your board. See
https://os. mbed. com/blog/ entry/DAPLink-bootloader-update/

Pololu Dual VNH5019 Motor Driver Shield for Arduino
https://www.pololu.com/product/2507

12V DC motor with 18.75:1 gearbox and 64 CPR encoder
https://www.pololu.com/product/4751

ACS711EX Current Sensor https://www.pololu.com/product/2452
Breadboard

USB-A to Micro-USB cable

USB-Ethernet adapter

Ethernet cable

M6 - Robot Leg Part I (a.k.a., DC Motor Control) (16/16) Revision: February 19, 2024

https://os.mbed.com/platforms/FRDM-K64F/
https://os.mbed.com/blog/entry/DAPLink-bootloader-update/
https://www.pololu.com/product/2507
https://www.pololu.com/product/4751
https://www.pololu.com/product/2452

	Getting Started
	DC Motor Setup & Position Control
	Electrical Model and Current Control
	Mechanical Model and Friction compensation
	Design Challenge: Impedance Control
	List of Equipment

