
University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2024

A8 – Digital Sensors 1 Last Revision: 12/31/23

Experiment A8
Digital Sensors

Procedure

Deliverables: checked lab notebook, brief tech memo
Recommended Reading: Section 6.4, Section 14.1, and Ch. 17 of the textbook

Overview
Analog sensors output a single voltage that is related to the measured parameter via some
calibration formula. This voltage output can be digitized and recorded by an analog-to-
digital (A/D) converter, which then forwards the measured values to some computer or
microcontroller where it can be saved in memory.

Digital sensors directly output a digital signal containing the measured parameter. This
eliminates the needs for an extra A/D. In many cases, it also eliminates the need for a
calibration procedure. These advantages have made digital sensors extremely popular.

Figure 1 – (Top) The rising edge of a clock signal determines where one bit ends and a new bit
begins. (Bottom) The 10-bit binary number 0011010100 is sent as a serial packet.

The measured value from a digital sensor is typically sent as a series of voltage pulses known as a
serial packet or bit stream. A serial packet is plotted above in Fig. 1. In addition to the packet
containing the measured data, a clock signal tells the computer or microcontroller where one bit ends
and a new bit begins. This clock signal can be internal in the microcontroller (asynchronous), or it
can be broadcast on an additional shared wire (synchronous).

In Part I, we will use an asynchronous digital sensor that does not have an extra wire for the clock
signal.

In Parts II and III, we will use synchronous I2C sensors that have a wire for data (SDA) and a wire
for the shared clock signal (SCL). The I2C communication protocol is so widely used, that the
Arduino UNO has dedicated SDA and SCL pins, shown on the right side of Fig. 2.

0 10 20 30 40 50 60 70 80 90 100
time, t (s)

0V

3V

0V

3V

si
gn

al
 v

ol
ta

ge
, V

(t)
 (V

)

Data
Signal

Clock
Signal

0 0 0 01 1 1 10 0

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2024

A8 – Digital Sensors 2 Last Revision: 12/31/23

Part I: Digital Humidity and Temperature Sensor (DHT11)
The DHT11 is an inexpensive digital humidity and temperature sensor that we will be connect to
the Arduino. It uses asynchronous data transmission, so there is no connection for a clock signal.

Figure 2 – The DHT11 sensor and Arduino UNO Microcontroller work in tandem with
breadboard.

Procedure

Important: Do NOT turn on the breadboard. You will use the Arduino UNO to provide power to
the sensor.

1. Connect the Arduino UNO to the lab computer via the USB cable. You should see a green
LED light up on the Arduino.

2. Use red and black jumper wires to connect the +5V and GND pins on the Arduino to the
vertical bus lines on the breadboard, as shown in Fig. 2. Use the orange handheld DMM to
verify that it is providing +5V of power.

3. Make the following connections via the breadboard, as shown in Fig. 2. Use female-to-male
jumper wires make the following connections:

a. - on DHT11 → GND on Arduino via the breadboard
b. + on DHT11 → 5V on Arduino via the breadboard

c. Data on DHT11 → Digital input pin 2 on the Arduino via the breadboard
4. Open the Arduino IDE software.

5. The Arduino will not know how to communicate with the DHT11, unless you add the DHT11
code library to the Arduino IDE:

a. Download the DHT11 Library from the A8 webpage.

Arduino UNO Microcontroller

GND

+5V

data

”flags” to connect data
signal to oscilloscope

DHT11
Sensor

SCL
SDA

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2024

A8 – Digital Sensors 3 Last Revision: 12/31/23

b. Go to “Sketch” > “Include Library” > “Add ZIP Library...”, navigate to the file you just
downloaded “DHT.zip”, and select it.

c. If it gives you an error that the library “already exists”, don’t worry. That simply means
the student before you already loaded the library.

6. Download the “DHT11 Example” Arduino code from the A8 webpage, and open it in the
Arduino IDE software.

7. In the Arduino IDE software, go to “Tools” > “Port” and select the COM port that says
“(Arduino/Genuino Uno)” next to it.

8. Click the check mark at the top of the Arduino program to check the code for errors.
9. Press the arrow button to compile the program and send it to the Arduino.
10. Go to “Tools” > “Serial Monitor” (or press “Ctrl + Shift + M”) to view the output from the

“Serial.print()” commands at the bottom of the screen. Make sure the baud rate is set to 9600.
You should see the measured temperature and relative humidity printed repeatedly.

11. Cup your hand around the sensor for about a minute. You should see the temperature and
humidity increase.

12. Use Channel 1 on the oscilloscope to measure the digital data signal from the sensors. Connect
the mini-grabbers to the appropriate places in the circuit by connecting the mini-grabbers to
“flag” wires in the correct rows of breadboard, as illustrated in Fig. 2.

13. Turn on the oscilloscope (if it’s not already on) and enter the following settings:
a. Press the yellow CH1 button, and set it to “AC coupling”.

b. Turn the Vertical Scale knob to 2.00 V

c. Turn the Horizontal Scale knob to 200 µs.

d. Push the Horizontal Position knob inward to center the orange pentagon at the top of
the screen.

e. Press the Trigger Menu button (top right corner) and choose the following:
i. Type: Edge

ii. AC coupling
iii. Rising edge trigger

iv. Turn the Trigger Level knob (top right corner) to approximately 1 Volt.
f. Press the “Menu Off” button near the bottom right corner of the screen.

14. If you set up everything correctly, you should see a square “pulse train” appear on the
oscilloscope every 3 seconds. This is the serial packet being sent from the sensor to the
Arduino.

15. Demonstrate the working system to the TA.

16. Disconnect the DHT11 and the Arduino UNO from the breadboard. Press the “default setup”
button at the bottom of the oscilloscope.

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2024

A8 – Digital Sensors 4 Last Revision: 12/31/23

Part II: Thermocouple with Compensator/Amplifier
Background

A thermocouple is a complicated transducer capable of measuring temperature across a large
range. Shown in Fig. 3 below, the thermocouple consists of two wire made from different metals
that are soldered or welded together, forming a “junction” at the tip of the probe. The junction at
the tip is known as the “hot junction”, while the opposite ends of the two wires are known as a
“cold junction”. This temperature gradient along the length of the two wires creates a voltage
gradient, as well—a phenomenon known as the Seebeck effect.

Figure 3 – An illustration of a Type K thermocouple connected to an compensator/amplifier.

The temperature induced gradient along the bottom wire is

Δ𝑉! = −𝑆! ⋅ (𝑇"#$ − 𝑇%#&'), (1)

where S1 is the Seebeck coefficient of the bottom metal wire. Similarly, the temperature induced
gradient along the top wire is

Δ𝑉(= −𝑆(⋅ (𝑇"#$ − 𝑇%#&'), (2)

where S2 is the Seebeck coefficient of the top metal wire. Applying Kirchhoff’s voltage law to the
circuit, we find that the output voltage at the cold junction is

𝑉#)$ = (𝑆(− 𝑆!) ⋅ (𝑇"#$ − 𝑇%#&'). (3)

In this lab, we will use a Type K thermocouple, with wires made of Alumel, an alloy of nickel and
aluminum with S1 = -17.3 µV/°C, and Chromel, an alloy of nickel and chromium with
S2 = 21.7 µV/°C. The probe tip temperature is given by Thot. Solving for Thot and plugging in
values for S1 and S2, we find that

𝑇"#$ = 𝑇%#&' +
*!"#

+,-*/∘/
. (4)

To determine the temperature at the probe tip, a simple RTD or thermistor is used to measure the
cold junction temperature Tcold, and the voltage difference at the cold junction Vout is measured as
an analog output from the circuit. This work is all done on a single, dedicated IC chip known as a
compensator/amplifier. In this lab, we will use the MCP9600 chip, which measures Tcold and Vout,
computes the temperature Thot, and outputs Thot and Tcold as a serial digital packet.

TcoldThot

Probe tip
“hot” junction

Compensator/Amplifier
“cold” junction

Chromel wire

Alumel wire

+

−

A/D

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2024

A8 – Digital Sensors 5 Last Revision: 12/31/23

Procedure
We will now use the SparkFun Qwiic Thermocouple Amplifier – MCP9600 breakout board and a
Type K thermocouple to measure temperature. The MCP9600 will compute the temperatures and
send them to the Arduino UNO microcontroller as I2C serial data. The I2C protocol is a common
form of synchronous serial communication.
All I2C sensors will have at least four electrical connections:

• Ground (GND)
• DC power source between 3 to 5V (VCC)
• Shared clock signal (SCL)
• Serial data (SDA)

Important: You will use the 3.3V power source on the Arduino to power the MCP9600. You do
NOT need to use the breadboard for this part of the lab.
1. Go to SparkFun.com and search for the MCP9600 Qwiic Thermocouple Amplifier, part

number 16294. When you have located the part webpage, scroll down and click the “Get
started …” link.

2. On the “Hookup Guide” page, scroll down and click the link that says “Download the
SparkFun MCP9600 Arduino Library (ZIP)”.

3. Open the Arduino IDE software, and add the MCP9600 code library to Arduino IDE. Similar
to Part I, go to “Sketch” > “Include Library” > “Add ZIP Library...”. Then navigate to the ZIP
file you just downloaded and select it.

4. The library you downloaded will teach the Arduino how to communicate with the MCP9600,
and it includes some basic examples codes. (Arduino calls its codes “sketches”.) Open one of
the example sketches. Go to “File” > “Examples” > “SparkFun MCP9600 Thermocouple
Library” > “Example1_BasicReadings”.

5. Make the following connections between the Arduino and MCP9600 breakout board using
female-to-male jumper wires:

a. GND on MCP9600 → GND on Arduino

b. 3V3 on MCP9600 → 3.3V on Arduino
c. SCL on MCP9600 → SCL on Arduino

d. SDA on MCP9600 → SDA on Arduino
6. Sketch the MCP9600, Arduino UNO, and electrical connections between the two devices in

your lab notebook. Label the four connections.
7. In the Arduino IDE software, go to “Tools” > “Port” and select the COM port that says

“(Arduino/Genuino Uno)” next to it.
8. Click the check mark at the top of the Arduino program to check the code for errors.

9. Press the arrow button to compile the program and send it to the Arduino.
10. Go to “Tools” > “Serial Monitor” (or press “Ctrl + Shift + M”) to view the output from the

“Serial.print()” commands, and set the baud rate to 115200.

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2024

A8 – Digital Sensors 6 Last Revision: 12/31/23

11. Press the reset button on the Arduino UNO, and you should see the measured temperatures
printed. Note that MCP9600 measures both the thermocouple probe temperature (hot junction)
and the ambient temperature (cold junction).

12. Hold the thermocouple probe tip in your hand. Record the value in your lab notebook. Does
the printed temperature seem reasonable?

13. Test the accuracy of the thermocouple and MCP9600:
a. Look at the mercury thermometer on the counter and record the ambient air temperature

in the room in your lab notebook.
b. Record ambient temperature from the MCP9600 in your lab notebook. Compare it to

the ambient temperature that you measured with the mercury thermometer.
c. Use the thermocouple probe to measure the temperature of ice water. Record the value

in your lab notebook.
14. Demonstrate the working system to the TA.
15. Disconnect the MCP9600 from the Arduino UNO. Leave the thermocouple plugged into the

MCP9600.

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2024

A8 – Digital Sensors 7 Last Revision: 12/31/23

Part III: Light Detection and Ranging (LIDAR)
Background

LIDAR sensors are commonly used in most new automobiles to detect nearby objects. Feedback
from these sensors can alert the driver that someone is in their blind spot, or they can be used to
completely automate the driving process (i.e. “self-driving cars”).

Illustrated on the left side of Fig. 4, a LIDAR sensor sends out a pulse of light from an infrared
laser. The pulse reflects off a nearby object and returns to a detector adjacent to the laser. The
time it takes for the reflected pulse to return Dt is used to calculate the distance r = cDt/2, where
c = 2.99´108 m/s is the speed of light. Sophisticated LIDAR cameras send out thousands of laser
pulses in multiple direction to create a 3D image of surrounding objects or terrain.

Figure 4 – (Left) A LIDAR sensor works by measuring the time it takes for a reflected laser pulse
to return to a detector. (Right) A LIDAR sensor is used to measure the height h vs. time t of a

bouncing ball.

In this lab, you will use a LIDAR sensor to measure to measure the height h vs. time t of a ball as it
bounces beneath the sensor. Shown on the right side of Fig. 4, the LIDAR sensor directly
measures the distance r between the sensor and the top of the ball. To compute the height of the
ball from the floor, you must subtract r and the diameter of the ball from the height of the sensor
h0.

The elasticity of a ball is quantified by its coefficient of restitution (COR), which is defined as the
ratio of the velocity just after it leaves the ground divided by the velocity just before the ball hits
the ground CR = vf / vi. A perfectly elastic ball will have CR = 1, while a completely inelastic ball
will have CR = 0. The ball used in this lab will have a COR somewhere between zero and one, and
it will be your job to measure it.

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2024

A8 – Digital Sensors 8 Last Revision: 12/31/23

Procedure
We will now use a Garmin LIDAR-Lite v3 sensor to measure the height as a function of time for a
bouncing ball. This sensor uses the same I2C output as the MCP9600, so you will have similar
connections with the Arduino: GND, VCC, SCL, and SDA.

Figure 5 – The LIDAR sensor is connected to the Arduino via a breadboard.

Safety First: Do NOT look directly into the LIDAR sensor. It contains an infrared laser. You will
not be able to see the IR laser spot, but it will still burn your retinas!
1. Mount the LIDAR sensor in the 3-finger beaker clamp so it is pointing downward and hanging

over the edge of the lab bench, as illustrated in Fig. 4. Take a moment to examine the 3-finger
beaker clamp. Focus your engineering awareness on the clamping mechanism. Try to think of
the most stable way to clamp the sensor.

2. Go to SparkFun.com and search for the LIDAR-lite V3, part number 14032. When you have
located the part webpage, scroll down and click the “Get started …” link.

3. On the “Hookup Guide” page, scroll down and click the link that says “Download the Garmin
LIDAR-lite V3 Arduino Library”. Save the ZIP file to the desktop of the computer.

4. Open the Arduino IDE software, and add the LIDAR-lite code library to Arduino IDE. Similar
to Part II, go to “Sketch” > “Include Library” > “Add ZIP Library...”. Then navigate to the ZIP
file you just downloaded and select it.

5. Go to the A8 webpage on the course website, download the “LIDAR Data Acquisition” code,
and open it in the Arduino IDE software.

6. Open the LIDAR data acquisition code you download from the A8 webpage in the Arduino
IDE software. Press the check mark to make sure it compiles correctly.

Breadboard
GND

LIDAR-lite v3
Arduino UNO

Breadboard
+5V

4.7kΩ pull-up
resistors

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2024

A8 – Digital Sensors 9 Last Revision: 12/31/23

IMPORTANT: The Arduino cannot provide enough current to power the laser, so you will need
to use the 5V power supply on the breadboard. Also, it is recommended that you include 4.7 kW
“pull-up resistors”, as illustrated in Fig. 5.
7. Connect the LIDAR sensor to the Arduino UNO via the breadboard, as shown in Fig. 5. (You

may need to re-adjust the beaker clamp, so the wires can reach the breadboard.) Make the
following connections using jumper wires:

a. BLACK on LIDAR → GND on breadboard
b. RED on LIDAR → 5V on breadboard

c. GND on Arduino → GND on breadboard

d. GREEN on LIDAR → SCL on Arduino (via 4.7 kW pull-up on breadboard)

e. BLUE on LIDAR → SDA on Arduino (via 4.7 kW pull-up on breadboard)
CAUTION! Do NOT look directly into the LIDAR sensor. It contains an infrared laser. You will
not be able to see the IR laser spot, but it will still burn your retinas!

8. Sketch the LIDAR-lite, Arduino UNO, and electrical connections between the two devices in
your lab notebook. Label the four connections.

9. In the Arduino IDE software, go to “Tools” > “Port” and select the COM port that says
“(Arduino/Genuino Uno)” next to it.

10. Click the arrow button in the IDE software to upload the LIDAR data acquisition code to the
Arduino UNO.

11. Go to “Tools” > “Serial Monitor” (or press “Ctrl + Shift + M”) to view the output from the
“Serial.print()” commands, and set the baud rate to 9600.

12. Press the reset button on the Arduino UNO, and you should see the measured distances r (units
of cm) and time t (units of ms) printed in the serial monitor. The code will record data from
the LIDAR sensor for a duration of Tmax = 8 seconds at a sampling frequency fS » 75 Hz. It will
repeat the data acquisition every time you press the reset button on the Arduino UNO.

13. Use the tape measure and your hand to verify the system is measuring the correct distance in
centimeters.

14. Sketch the experimental setup illustrated on the right side of Fig. 4 in your lab notebook.
15. Measure the distance h0 from the LIDAR sensor to the floor. Record the value in your lab

notebook.
16. Measure the diameter D of the ball. Record the value in your lab notebook.

17. You will now measure the distance vs. time for a bouncing ball. Locate the basketball or
kickball. Hold it directly under the sensor, and have your lab partner press the reset button on
the Arduino. When data starts to appear in the serial monitor, drop the ball so it bounces
several times directly underneath the sensor.

Pro-tip: For consistent vertical bounces, hold the ball so the black air hole for pumping up the ball
is pointed upward. Lightly hold the ball by the sides with flat hands. Release it by quickly moving
both hands horizontally outward in a synchronized fashion.

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2024

A8 – Digital Sensors 10 Last Revision: 12/31/23

18. The ball must bounce several times directly under the sensor. If it bounces off to the side, you
must click “clear output” on the serial monitor and try again.

19. When you are confident you have good data, save the data.
a. Highlight all of the data in the serial monitor up to time t = 0. (Make sure you are only

selecting data from the most recent drop.)
b. Press “Ctrl + c” to copy the data.

c. Paste the data in a blank .txt file using notepad.
d. Save the data as a .txt file.

20. Import the data into Matlab or Excel and make a quick plot of distance vs. time to show to the
TA. The data should look like a series of several consecutive parabolas. If it does not look
like this, you must repeat the measurement.

21. Email the data to yourself and your lab partner, or use a USB flash drive to transfer it to you
laptops.

22. Return the lab bench to its initial state:

a. Disconnect the LIDAR and Arduino UNO from the breadboard. Disassemble the
circuit on the breadboard.

b. Delete the LIDAR code library from the download folder.
c. Return the ball to the cart at the center of the lab.

Data Analysis and Deliverables – Using the format and style outlined on HW1, write a brief
tech memo containing the following items.

1. A table comparing temperatures measured with the thermocouple and MCP9600 to the known
standards (mercury thermometer and known temperature of ice water).

2. A plot of the ball height h vs. time t of the bouncing ball. (The height h(t) is defined in Figure
4. It must be computed from the measured value of h0, D, and r(t).)

3. Crop out a single parabola worth of height vs. time data for the bouncing ball, and apply a
quadratic curve fit.

a. Plot the measured data as individual points.

b. Plot the quadratic curve fit as a smooth, continuous line.
c. Use the fitting parameters to extrapolate the acceleration due to gravity g. Report the

extrapolated value of g in the caption of the plot.

Talking Points – Please discuss the following in your lab report.

• Which experiment yielded a better value of g? This one or Galileo’s inclined plane?

• Include the theoretical equation for the height vs. time of a single bounce of the ball.

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2024

A8 – Digital Sensors 11 Last Revision: 12/31/23

Appendix A

Equipment

• Arduino UNO Microcontroller
• 12” male/male jumper wires
• 12” male/female jumper wires
• 6ft USB cable
• Breadboard
• BNC cable with mini-grabber adapters
• DHT11 Digital Humidity and Temperature sensor (blue with 3 pins)
• MCP9600 thermocouple amplifier (SparkFun Part # 16294)
• 1/16” Type K thermocouple
• Garmin LIDAR-lite V3 with 50cm cable (SparkFun Part # 14032)
• Lab stand w/ 3-finger beaker clamp
• Measuring taper
• Kickball or basketball
• Extech MN35 DMM
• Hg Thermometer
• Ice Water

