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Overview 

Verification 
■  Code verification vs. Solution Verification vs. Software Verification 

 
Euler Equations of Gas Dynamics 
■  Foundation of coupled models involving multiple physics 

 
Comments on Exact Solutions 
■  Similarity solutions & Lie group methods 

 
Some “Workhorse” Exact Solutions 
■  And why they’re important 

 
Summary 

“A computer lets you make more mistakes faster than any invention in human history — with the 
possible exceptions of handguns and tequila.” Mitch Ratliffe, Technology Review, April, 1992. 



A little bit more about verification…  

Software Verification:  SQE practices 
including regression, unit tests, etc. 

“Verification is the process of evaluating if a computer code 
correctly implements the algorithms that were intended.” 

Code Verification:  Are the equations represented by a 
code and the algorithms for the numerical solution of 
these equations themselves mathematically correct? 

 Successful verification admits the possibility of inadequate algorithms. 

Algorithms Software Testing 

Calculation Verification:  What is the error in a given 
calculation? This includes discretization robustness 
and convergence studies, formal error estimation 
procedures, inference from test problem suites. 

“Nobody’s perfect, and most people drastically underestimate their distance from that state.” 
Mahaffy’s First Law of Human Nature 



The Euler equations of gas dynamics form 
the base of computational mechanics. 

Conservation of mass, momentum, and energy: 

  The state U(x,t): Rd ´R ® Rn  is the array of conserved quantities 
  There may be additional constraints or source terms on the RHS 
  Appropriate initial and boundary conditions must also be given 
  For 1-D compressible, inviscid, non-heat-conducting flow, 

the state U	  and flux  f	  	  are given by: 
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 + div f (U) =   0
Flux function 
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E  =   e + 1
2u2

Specific kinetic energy Specific internal energy (SIE) ! 

p =  P(",e)

Equation of state (EOS) 



How does one find exact solutions? 

Recall, one must have exact solutions for Code Verification. 
  The ICs and BCs are inextricably woven into the solution. 
  One must be able to specify these ICs and BCs — or some (very) 

close approximation to them — in the code being analyzed.  
There are a few ways to find exact solutions to PDEs: 

  “Straightforward” — the Method of Manufactured Solutions (MMS) 
  Want:  L(u) = 0  in W, with  I(u) = 0  at  t=0  and  B(u) = 0  on ∂W	

  Use:  L(v) = f  in W,  with  I(v) = g  at  t=0  and  B(v) = h  on ∂W	


  “Not so straightforward” 
  Lie groups (and variants) – see Coggeshall*, etc.  

New exact solutions continue to be found for coupled physics. 
  E.g., in conduction-hydrodynamics†, radiation-acoustics‡, and radiation-

hydrodynamics§.  

* S. Coggeshall, “Analytic solutions of hydrodynamics equations,” Phys. Fluids A 3:757–769 (1991). 
† P. Reinicke, J. Meyer-ter-Vehn, “The point explosion with heat conduction”, Phys. Fluids A  3:1807–1818 (1991).  
‡ W.G. Vincenti, B.S. Baldwin, “Effect of Thermal Radiation on the Propagation of Plane Acoustic Waves,” 

J. Fluid Mech. 12, pp. 449–477 (1962).  
§ R. Lowrie, R. Rauenzahn, “Radiative shock solutions in the equilibrium diffusion limit,” Shock Waves 16:445–453 (2007); 

R. Lowrie, J. Edwards, “Radiative shock solutions with grey nonequilibrium diffusion,” Shock Waves 18:129–453 (2008). 



What are Lie groups and how are they used? 

Quick historical perspective… 
  Theory proposed and worked out by Sophus Lie. 
  Lie began investigations by trying to use Galois’ ideas to 

understand differential equations. 
  Modern proponents include Ovsiannikov, Ibragimov, Olver,… 

M. Sophus Lie 
(1842-1899) 

“the genius who created the theory of 
transformation groups” Élie Cartan  

“Das Ziel der Wissenschaft ist einerseits, neue Tatsachen zu erobern, andrerseits, 
bekannte unter höheren Gesichtspunkten zusammenzufassen.”   

Sophus Lie, Gesammelte Abhandlungen, B.G.Teubner, Leipzig, 1934. 

  In practice, one hopes to reduce PDEs to ODEs. 
  The reason this helps is that, in general, we can compute solutions 

to (many) ODEs with greater accuracy and higher precision 
— i.e., with more confidence — than solutions to (almost all) PDEs. 

  There is no claim that this approach produces all solutions. 
  Symmetry group methods have been applied to a wide range 

of equations across a broad spectrum of science.  
  Can also be used to obtain new solutions from a given, known solution. 

Goals: (1) Find the symmetry groups of solutions 
to a given equation, and (2) use these groups to 
reduce the equations to a more tractable form. 



A quick-and-dirty overview of Lie group 
methods applied to the Euler equations… 

Start with the conservation laws, written as Eulerian-frame PDEs: 

“Mathematics is an interesting intellectual sport but it should not be allowed to stand in the 
way of obtaining sensible information about physical processes.”  Richard Hamming 
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  A non-trivial analysis 
shows that these 
equations are invariant 
under the following 
transformations: 

  The collection of 
invariance properties 
can be written in terms 
of a “group generator” 
operator: 



1. Operate on the Euler 
equations   

2. Operate on an arbitrary 
function F	


The group generator is used to complete 
the Lie group analysis. 

  The operator      must first be 
“extended” to include terms with  
partial derivatives with respect to 
the partial derivatives of variables. 

  This extension results in additional 
terms involving operators such as: 
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  Operating on the Euler equations 

with the extended generator 
returns zero identically. 

  This confirms the validity of 
the underlying symmetries 
and subsequent analysis. 

 

ˆ U   Solving the equation 

with the method of characteristics 
gives new dimensionless 
variables with which to reduce 
the Euler equations to ODEs: 

  This is a codified procedure by 
which to obtain similarity variables 
for PDEs. 



Substitute the new variables into the Euler 
equations to obtain a system of ODEs. 

The final result of this analysis for the Euler equations is: 

Important note: the above analysis is valid only if all associated 
initial conditions, boundary conditions, and constraints are also 
invariant under the identified symmetries. 
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 F1, F2, and F3 are nonlinear functions 
of C and V. 

 Once the function C(V) is known, the 
remaining two equations reduce to 
quadratures. 

 The solution of this system is transformed 
back to physical variables using the 
dimensionless variable definitions. 



Riemann problems are the canonical IVP, 
with two constant initial states. 

 These lead to the standard “shock tube” solutions 
of gas dynamics. 

 These solutions possess different combinations 
of the canonical wave structures:  

For 1-D Cartesian geometry, you must 
consider the Riemann problem.  
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G.F. Bernhard Riemann 
(1826-1866) 

“the greatest mathematician” Peter Lax  

The good news is that these exact solutions for polytropic 
gases can be readily evaluated. 

 Only a single root-solve is required to obtain the entire solution.* 
* J.J. Gottlieb, C.P.T. Groth, “Assessment of Riemann Solvers for Unsteady One-Dimensional lnviscid Flows 

of Perfect Gases,” J. Comput. Phys. 78:437–458 (1988).  
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There are five basic 
solutions for the 1D gas 
dynamics equations 
with an ideal gas EOS*.   
 These depend on the 

relative pressures and 
velocities in the ICs. 

The Riemann problem can have different 
solutions, depending on the initial conditions. 
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R = Rarefaction 
C = Contact 

V = Vacuum/Void 

S = Shock 	  	  

“Wave curves” “Self-similar” “Snapshots” 
* R. Menikoff, Application of Non-Reactive Compressible Fluids, LANL Report LA-UR-01-273 (2001),  

Test all five different 
Riemann solutions!  

  E.F. Toro, Riemann solvers and numerical methods for fluid dynamics, Springer-Verlag (2009).  



Analysis of two challenging RPs demonstrates 
convergence of a WENO scheme. 
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Some details on the WENO scheme used in 
computing the Riemann problem results… 

  Fifth-order WENO in space, third-order TVD Runge-Kutta time stepping 
  Shu, C.W., “Essentially non-oscillatory and weighted essentially non-

oscillatory schemes for hyperbolic conservation laws”, in Advanced 
Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture 
Notes in Mathematics, Vol. 1697, Springer-Verlag, 1998. 

  Mapped weights modification 
 Henrick, A.K., Aslam, T.D., Powers, J.M., “Mapped weighted essentially 

non-oscillatory schemes: Achieving optimal order near critical points”, 
Journal of Computational Physics, 207, 542–567 (2005). 

  First-order monotonicity constraint 
 Suresh, A., Huynh, H.T., “Accurate monotonicity-preserving schemes with 

Runge-Kutta time stepping”, Journal of Computational Physics, 136, 83–
99 (1997). 

  Godunov-type flux difference splitting with HLL Riemann solver 
 Toro, E.F., Riemann solvers and numerical methods for fluid dynamics, 

Springer-Verlag, 2009. 
 LeVeque, R.J., Finite volume methods for hyperbolic problems, 

Cambridge University Press, 2002. 



For spherically symmetric* solutions, there are 
three cardinal compressible flow problems.  

Noh — test the conversion of kinetic energy to internal energy 
  The issue of “wall heating” is clearly manifested in this problem. 
  A workhorse test problem: easy to set up, easy to evaluate, illuminates 

particular algorithm features (at the boundary, near the shock). 

Sedov — test the conversion of internal energy to kinetic energy 
  First used as a model for the relation between source energy 

and shock distance — and yield estimation, à la Taylor (1945). 
  An equally common test problem:  set up continues to engender 

debate, more complicated to evaluate, illuminates particular 
algorithm features (particularly near the shock). 

Guderley — test the transition from converging flow to diverging flow 
  Historically underused for verification. 
  A seldom seen test problem: tricky to evaluate, complicated to set up, with no 

established knowledge base to understand its testing of algorithm features. 

* Solutions to these problems also exist under the assumption of planar or cylindrically symmetry. 

Reinicke & Meyer-ter-Vehn (RMtV) — Sedov with heat conduction 
  A rare — and difficult — coupled-physics code verification test problem. 



The Noh problem assumes uniform inflow 
toward the origin as an initial condition.  

Noh* obtained a simple, closed-form solution for uniform inflow 
toward the origin in planar, cylindrical, or spherical symmetry. 
  The kinetic energy in the t = 0 conditions is converted to 

internal energy in the t > 0 solution. 

* W. Noh, “Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux,” J. Comput. Phys. 
72:78–120 (1987).  

Noh’s publications suggest that he pieced together 
the different elements of his solution. 

† R. Axford, “Solutions of the Noh problem for various equations of state using Lie groups,” Lasers Part. Beams 18:93–
100 (2000).  

  Problem is easy to set up and its exact solution is easy to evaluate. 
  Behavior at the origin governs the salient structures. 

  Axford† gives a derivation of the solution motivated by Lie group methods… 
  …and extended the solution to other EOSs. 

  Gehmyer et al.‡  give the full solution… 
  …and evaluate the solution between the origin and a rigid piston approaching 

the origin. 

‡ M. Gehmyer, B. Cheng, D. Mihalas, “Noh’s constant-velocity shock problem revisited,” Shock Waves 7:255–274 (1997).  



The exact Noh solution is easy to evaluate. 

The full solution to the standard Noh problem is easy to evaluate.  

Density 	
 	
r(r,t) / r0 = 	
 	
 	
[(g+1)/(g-1)]d     [1-(u0t/r)]d-1  

  This facilitates comparison between 
exact and computed solutions. 

Post-shock 
r < rS 

Pre-shock 
r > rS 

SIE   e(r,t) /(u0
2/2) = 	
 	
 	
 	
1 	
 	
 	
  0 

Velocity   u(r,t) / |u0| = 	
 	
 	
 	
 	
0 	
 	
 	
-1  
Here, the shock position is:    rS = US t    with shock speed    US = (1/2) (g-1) |u|0

  

  The canonical hydrocode test case is spherical geometry, g = 5/3, tfinal = 0.6:  

‡ M. Gehmyer, B. Cheng, D. Mihalas, “Noh’s constant-velocity shock problem revisited,” Shock Waves 7:255–274 (1997).  

Pressure 	
p(r,t) /(r0u0
2/2)  = 	
 	
(g+1)d/(g-1)d-1 	
 	
  0 

Pressure Density SIE Velocity 



Noh result look good for convergence. 

Analysis of 1D hydrocode results look good… 

* W.J. Rider, “Revisiting Wall Heating,” J. Comput. Phys. 162:395–410 (2000).  

Say “Yes!” to Noh! 

Pressure Density SIE Velocity 

…but the problem remains a workhorse for algorithm developers 
  Numerical results give near-axis values that with: 

 Density that is too low 
 SIE that is too high 

  The Noh problem remains a “must-do” test for compressible flow codes. 

This is the 
celebrated “wall 

heating” problem.* 



The Sedov problem assumes an instantaneous 
energy source at the origin.  

Sedov* considered the gas dynamics equations with 
an intense initial energy source. 
  1D, with planar, cylindrical, or spherical symmetry.  
  The initial density is non-zero;  other variables initially zero. 
  Singular IC is key for the quasi-analytical solution. 
  Detail phase-plane analysis elucidates the solution structure. 

* L.I. Sedov, Similarity and Dimensional Methods in Mechanics, Academic Press, New York, p.147 ff. (1959); 
see also report by Bethe et al., papers by Taylor, Book, books by Korobienikov, Whitham.  

  

Sedov obtained self-similar solution by dimensional analysis: 
Non-dim. Position Non-dim. Velocity 
Non-dim. Density Non-dim. Pressure 

  A “self-similar solution” means that these scaling functions exist for the 
governing equations, reducing the governing PDEs to ODEs. 

l = r / rs V(l) = u(r,t)/ (r/t) 

R(l) = r(r,t) / (Ar–w) P(l) = p(r,t)/ (Ar2–w /t2) 

“At the London meeting [International Astronautical Federation, 1959] Sedov even seemed to enjoy his own doubletalk. When the 
Russians withdrew an astronomical paper, Sedov admitted to a Russian-speaking colleague that the reason was that British figures 
proved it erroneous. But when a British reporter asked for corroboration, Sedov offered three other explanations in quick succession: 
1) there were too many papers already; 2) it would have been given if the author had been on hand; and 3) there were not enough 
Russian scientists present to discuss it.  He chuckled merrily at each new alibi.”  Time Magazine, Sept. 21, 1959. 

Leonid I. Sedov 
(1907–1999) 



The Sedov problem has three different solutions, 
depending on the initial conditions. 
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Depending on the value of initial total energy E0, polytropic index g, 
and initial density distribution (through parameter w in the initial 
density r = r0 exp(–w r) ), there are three distinct solution families: 

1  Standard 
constant initial 

density 

2  Singular 
non-uniform 
initial density 

3  Vacuum 
non-uniform 
initial density 
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Test all three 
Sedov solutions!  

“Sedov's book, which has gone through ten Russian editions and three 
English translations, is the bible of the subject of self-similarity in fluid 

mechanics. But like the Bible, it has been more reverenced (and 
referenced) than read.”  D.L. Book, Shock Waves 4:1-10 (1994)  



These different Sedov cases exist in the 
other geometries, as well.  
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The “standard” 
solution exist in all 
geometries, but the 
“singular” and 
“vacuum” solutions 
only exist in 
cylindrical and 
spherical geometries. 



Although the initial conditions can be tricky, 
the convergence results are readily obtained.  

There are “religious wars” about how to set up the problem… 

Software to evaluate these solutions is readily available*. 
  See: http://www.cococubed.asu.edu/ 
  Our more sophisticated version remains in “research code” form. 

* J. Kamm, F. Timmes, On Efficient Generation of Numerically Robust Sedov Solutions, LANL Report LA-UR-07-2849 (2007).  
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…but convergence results are reasonably robust for “standard” Sedov. 
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The Guderley problem assumes an infinitely weak 
shock, infinitely far away, infinitely long ago... 

† J. Meyer-ter-Vehn, C. Schalk, “Selfsimilar Spherical Compression Waves in Gas Dynamics,” Z. Naturforsch. A 
37:955–969 (1982).  

Guderley* published an insightful phase plane 
analysis of the ODEs obtained from self-similar 
solutions of the Euler equations. 
  Reduced equations are obtained from dimensional 

analysis à la Sedov.  
  Equations are ultimately reduced to a single nonlinear 

ODE, which forms the basis of a nonlinear eigenvalue 
problem. 

  Connection of singular points in the phase plane leads 
to the “infinitely unusual” initial conditions. 

  Meyer-ter-Vehn & Schalk† further elucidated the phase 
plane analysis.  

  Proper integration through the singularities in the phase 
plane is delicate and numerical evaluation is explained 
(almost completely) in the spectacular work of Lazarus‡. 

* G. Guderley, “Starke kugelige und zylindrische Verdichtungsstöße in der Nähe des Kugelmittelpunktes bzw. der 
Zylinderasche,” Luftfahrtforschung 19:302–312 (1942).  

From Meyer-ter-Vehn &. Schalk† 

‡  R. Lazarus, “Self-Similar Solutions for Converging Shocks and Collapsing Cavities,” SIAM J. Numer. Anal. 
18:316–371 (1981).  



The Guderley solution is determined 
by two nonlinear eigenvalues.  

The ODE “Master Equation” and BCs 
include two unknown parameters: 

  The similarity exponent α : 
  Calculated iteratively; 
  Once found, it determines converging solution. 

  The reflected shock pre-factor B : 
  Calculated by interconnection between BCs; 
  Once found, it determines diverging solution. 

  Solution software remains a research code. 

Spherically converging Spherically diverging Origin Origin 

t  < 0 t  > 0 
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converging 

shock 
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shock 
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See also: H.G. Hornung et al., Acta Mechanica 201:31–35 (2008), Ponchaut et al., J. Fluid Mech. 560:103–122 (2006).  



Despite startup errors, the code converged 
acceptably well — even through reflection*. 

Convergent-phase ICs results  
converge at about 1st order 
through bounce to divergence. 
  Starting at 

t = –1 leads 
to obvious 
numerical 
issues at 
t = +0.5. 

  Starting at 
t = +0.0186… 
leads to 
“better-
looking” 
results.  

Divergent-phase ICs results  
converge at about 1st order 
(without bounce). 

* S. Ramsey, J. Kamm, J. Bolstad, “The Guderley Problem Revisited,” submitted to Int. J. Comp. Fluid Dyn. (2011).  

t  = +0.5 t  = +0.5 

First order 

  Almost 
first order 
in each 
variable. 

  But with 
different 
absolute 
errors. 

Give Guderley a go!  
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Reinicke & Meyer-ter-Vehn* coupled heat 
conduction to the Sedov configuration.  

RMtV ≈ Sedov + heat conduction 
 Coupled physics implies that: 

  The phenomenology is more complex;   
  The solution is much more complicated. 

* P. Reinicke & J. Meyer-ter-Vehn, “The point explosion with heat conduction”, Phys. Fluids A  3:1807–1818 (1991).  

Jürgen Meyer-ter-Vehn 

 RMtV obtained self-similar solution for delta-function energy ICs 
using Lie group analysis. 

  Based on the foundational analysis of Coggeshall, RMtV used Lie group 
analysis to reduce the PDEs to ODEs (+ ICs). 

  To obtain a solution, RMtV wrestled with jump conditions at the shock 
and nontrivial functional behaviors at both the heat front and the origin. 

  The solution method involves Lie group analysis and careful asymptotics 
based on the mathematical expression of fundamental physical relations. 

Test coupled 
physics solutions!  



RMtV Problem:  The full solution is determined 
by obtaining the proper value at the origin. 

Inelegant…!Laborious…! …but it works!!

The ODEs form a nonlinear eigenvalue problem in the 
variables and a parameter b0 .!

  Simple “manual bisection” was used 
to converge to the (ostensibly) correct 
value of b0 .#

  Comparative evaluation of this result 
was performed by two separate 
individuals with two different codes 
developed completely independently.#

  The appropriate value of b0 is determined by integrating the solution 
back from the heat front to the origin (i.e., r    0).#

Style! Results!
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Plots of exact and computed RMtV problem 
results reveal some discrepancies. 

We first solve the ODEs with assigned values, then infer the 
initial energy, and then use that value in the hydrocode ICs. 
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 Hydrocode results were computed with with 3200 points on [0,1]: 

Hydrocode#

“Exact”#

|∆Results|#



RMtV convergence rates are encouraging 
but not overwhelming… 

Using 1D calculations with 800, 1600, 3200 points on [0,1], 
convergence rates at the final simulation time were obtained: 
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“Oldies but goodies” can play key role in the 
gas dynamics code verification repertoire. 

Thanks to countless years of labor by lucky, clever, brilliant, and 
hard-working technical forebears, there are many nontrivial exact 
solutions for code verification of inviscid, compressible flow.  

  Take advantage of this work! 
  Test all five Riemann solutions! 
  Say “Yes!” to Noh!  

Fundamental applied math skills remain vital in this field.  
  Numerics, ODE theory, PDE theory, Lie group theory, asymptotics,… 

Verification analysis requires a lot of careful bookkeeping.  
  Scripting + good coding skills are extremely helpful. 

Take advantage of the solution codes that are out there.  
  Check out Frank Timmes’ website: www.cococubed.asu.edu 

“Whatever you do will be insignificant, but it is very important that you do it.”  
Mahatma Gandhi 

  Test all three Sedov solutions!  
  Extra credit: Give Guderley a go! 
  Extra-extra credit: Coupled physics! 
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