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Verification and Validation

• Verification: solving the equations right (mathematics)

• Validation: solving the right equations (physics)

• Verification must precede validation; both must be

done for a pre-dictive scientific computation.

• Strong verification: a solution achieves a convergence

rate consistent with its claimed order of accuracy.



Motivation

• Tuning computations to match experiments without harmonizing

with underlying mathematics renders pre-dictions unreliable.

• Attempts to computationally pre-dict, not post-dict, results of a

benchmark high speed combustion experiment generated “widely

different outcomes,” LeBlanc, et al., J. Physique IV, 2000.

• Mis-understanding of how to rigorously verify computations of

flows with embedded shocks is widespread, e.g. the recent

incorrect statement in JCP, 2006, “High-order accurate shock-

capturing schemes are capable of properly resolving discontinu-

ities...The convergence rate is correct.”



Contradiction: “High Order” Shock-Capturing

• High order shock-capturing methods only converge at

high order on smooth problems.

• Even when smooth, Henrick, Aslam & Powers, JCP,

2005, show

– The standard “fifth order” WENO5 method only

converges at third order.

– A modification (WENO5M) recovers fifth order.

– However, both WENO5 and WENO5M converge at

no more than first order for captured shocks.



Model: Reactive Euler Equations
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Here: mainly one-step, some detailed kinetics.



Two-Dimensional Oblique Detonation via “High

Order” Shock-Capturing
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• Powers & Aslam,

AIAA J., 2006,

• one-step kinetics,

• closed form exact so-

lution available.



Convergence Rate of “High Order” Shock-Capturing
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Shock-Fitting for True High Order Convergence

• Enforce unsteady Rankine-Hugoniot jump conditions,

• Transform to shock-attached frame via

x = ξ −
∫

t
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• Shock-change equation for shock acceleration:
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• point-wise method of lines on uniform spatial grid,

• fifth order spatial discretization: PDEs→ ODEs in time,

• fifth order temporal discretization to solve ODEs.

• Vary activation energy, 25 ≤ E ≤ 28.4.



Stable Case, E = 25, with Shock-Fitting
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• one-step kinetics,

• closed form, exact so-

lution for D available,
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• error in D converges

at O(∆x5.01).



Linearly Unstable, Non-linearly Stable Case: E = 26
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• One linearly unstable

mode, stabilized by

non-linear effects,

• Growth rate and fre-

quency match linear

theory to five decimal

places.



Bifurcation Diagram and Transition to Chaos

Feigenbaum’s number, 4.669201..., captured as 4.66 ± 0.09.



Two-Dimensional Unsteady Reactive Euler

Equations with One-Step Kinetics and Shock-Fitting
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N1/2 ∆x Range Growth Rate (a2) Frequency (a3)

5 0.2 [20:40] 0.024362 1.10530

10 0.1 [30:45] 0.024348 1.10487

20 0.05 [40:60] 0.024210 1.10437

Henrick, Aslam & Powers, 2006; 5th order convergence.



Two-Dimensional Detonation Cells
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Complex shock topology reduces convergence rate to

less than first order.



One-Dimensional Steady Reactive Euler Equations

with Detailed Kinetics and Shock-Fitting

• see Powers & Paolucci, AIAA J., 2005.

• CJ methane-air detonation: CH4 + 2O2 + 7.52N2.

• N = 21 species, J = 52 reversible reactions.

• po = 1 atm, To = 298 K , MCJ = 5.13.

• Rigorous spatial eigenvalue analysis gives precise

estimates of advection/reaction length scales.



Verification and Validation of Detailed Kinetics Model

• Model exercised under isobaric, spatially homoge-

neous conditions to estimate ignition delay time.

• Mathematical verification: predicts similar ignition de-

lay time as calculations of Petersen and Hanson:

30 µs vs. 25 µs at To = 1500 K , po = 150 atm.

• Experimental validation: predicts ignition delay time

observations of Spadaccini and Colket:

115 µs vs. 139 µs at To = 1705 K , po = 6.6 atm.



Mass Fractions versus Distance
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Eigenvalue Analysis: Length Scale Evolution
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The finest length scale is 10−5 cm. This scale arises from collision-

based reaction constitutive models and suggests that a fully validated

reactive flow model with detailed kinetics is obliged to include

diffusive transport, which evolves on the same scales.



Discussion

• Verification of flow computations with embedded discontinuities

exhibits less than first order convergence for shock-capturing and

true high order convergence for shock-fitting of simple topologies.

• A physically rational model with detailed kinetics needs to be

Navier-Stokes for validation; detailed kinetics with Euler can be

useful, but is formally physically inconsistent.

• Algorithm craftsmanship can trump hardware improvements on

certain problems.

• Reliance on hardware alone to achieve the gains described

here would require many decades, even assuming the empirical

Moore’s Law continues to hold.



Discussion

“Fast computers help but it is the fast algorithms that

make a big difference in our ability to simulate physical

processes,”

P. Fast and M. J. Shelly, “Moore’s Law and the Saffman-

Taylor Instability,” JCP, 2006.



Discussion

“If computational scientists and engineers are genuinely

serious about these quality issues, they will take the

responsibility and the relatively little extra effort to design

their codes (or modify old ones) so that V2V can be

confirmed by independent users.”

P. J. Roache, “Building PDE Codes to be Verifiable and

Validatable,” Comput. Sci. Eng., 2004.


