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Motivation

The Wavelet Adaptive Multilevel Representation (WAMR)
enables systems of partial differential equations to be
solved to a user-defined error tolerance.

For many problems, especially those with a few regions of
steep gradients, the WAMR method can achieve a solution
under a given error threshold with less computational effort
than traditional finite difference or finite element methods.

In contrast to traditional finite difference or finite element
methods, WAMR is intrinsically verified.

We verify the verification based on error tolerance

refinement instead of grid refinement and exercise it on
standard challenging test problems in non-linear wave
dynamics (Sod, Shu-Osher, etc.).
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Verification and Validation

Verification: solving the math right.

Validation: solving the right math.

Verification is confined to mathematical questions generally
involving the comparison of a finite precision prediction
against a high precision or exact solution; it is the subject
of this presentation.

Validation speaks to comparison of predictions to
experimental data; it will not be considered here.

We will consider problems with no exact solution and so
obtain verification by comparing solutions at a given error
tolerance against those with an extremely small error
tolerance.

Roache, “Building PDE codes to be verifiable and validatable.” Computing

in Science & Engineering 6(5): 30-38, 2004.
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WAMR Method

Represents field variables by projecting them onto a
multiscale basis of wavelets.

Adaptive grid algorithm refines the grid only where it is
necessary to meet the user-prescribed error tolerance.

Collocation points with wavelet amplitudes below the error
threshold are removed.

Similar to wavelet-based JPEG-2000 image compression,
the WAMR method compresses the PDE solutions.

Paolucci, Zikoski, and Wiraseat, “WAMR: An adaptive method for the

simulation of compressible reacting flow. Part I. Accuracy and efficiency of

algorithm,” J. Comp. Phys., 272(1): 814-841, 2014.
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WAMR Method

Given the threshold parameter ε, the approximation of u(x) becomes

uJ(x) =
∑
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Error in WAMR

The user-defined error threshold parameter is ǫ.

The error in the sparse wavelet representation is

||U − UJ
ǫ ||∞ ≤ C1ǫ.

The number of collocation points to achieve the error
tolerance is

NE ≤ C2ǫ
−d/p.

The error of a derivative approximation is
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Navier-Stokes Model for Verification Test Problems
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µ
= 6.526× 105, P r =

µcp

k
= 1.392.

Physical diffusion has been added to the test problems to
prevent our adaptive method from refining to zero.
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Error Evaluation

A diffusion-based time step is selected so that temporal
error smaller than spatial error.

The error is computed by comparing to a very fine uniform
grid solution.

The error is evaluated for a specific variable at a specific
time for all points in the grid.

The maximum error at a specific time was compared with
the prescribed error to verify the predictions.

Each problem was run for multiple different error
thresholds to verify the method for any error threshold with
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EVTS Verification Test Problems

Three problems were chosen from the Enhanced
Verification Test Suite for Physics Simulation Codes
(EVTS)

1 Sod problem,
2 Modified Sod problem,
3 Shu-Osher problem,

They are hydrodynamic shock problems commonly used for
code verification.

Physical viscosity was added as the WAMR requires
continuity.

Our solutions thus incorporate physical diffusion processes
ignored in the EVTS problems.

Kamm, et al. “Enhanced verification test suite for physics simulation

codes,” Los Alamos National Laboratory, LA-14379, 2008.
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Sod Problem Initial Conditions

Models a shock tube filled with N2 at
two different states.

Diffusion coefficients were assumed to
be the values for N2 at 300 K.

Initial shock was modeled as tanh.

EVTS is dimensional; we scaled
equations to easier quantify the
relative effects of added diffusion.

EVTS initial conditions are
non-physical!

ρ [g/cm3] u [cm/s] p [dyne/cm2]
Left 1.0 0.0 1.0
Right 0.125 0.0 0.1

0 ≤ x ≤ 1 cm; xi = 0.5 cm; tf = 0.25 s
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Sod Shock Tube Solutions as Error Tolerance Varies
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Error
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The achieved error is well predicted by the specified error
for a wide range of errors.

The achieved error grows slowly with time due to
integration error.
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Shu-Osher Problem

ρ [g/cm3] u [cm/s] p [dyne/cm2]
Left 3.857143 2.629 10.333
Right 1+ 0.2sin(5x) 0.0 1.0

0 ≤ x ≤ 9 cm; xi = 4.5 cm; tf = 1.8 s
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Modified Sod Problem

ρ [g/cm3] u [cm/s] p [dyne/cm2]
Left 1.0 0.75 1.0
Right 0.125 0.0 0.1

0 ≤ x ≤ 1 cm; xi = 0.3 cm; tf = 0.2 s
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Conclusions

The WAMR method provides automatically verified results
based on the user-prescribed error criteria.

Traditional verification notions such as order of
convergence are less relevant for this adaptive method.

The WAMR method effectively captures the intricacies of
advanced hydrodynamic problems

The adaptive nature of the WAMR method allows one to
compute a solution to a specified error in less
computational time than competing non-adaptive methods.
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