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Project Summary

â An adaptive method is applied
to the simulation of compressible
reacting flow.

â Model includes detailed chemical
kinetics, multi-species transport,
momentum and energy diffusion.

â Problems are typically multi-
dimensional and contain a wide
range of spatial and temporal
scales.

â Method resolves the range of scales
present, while greatly reducing
required computational effort and
automatically produces verified
solutions.

“Research needs for future internal

combustion engines,”

Physics Today, Nov. 2008, pp 47-52.
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Compressible Reactive Flow

Code solves the n-D compressible reactive Navier-Stokes equations:

∂ρ

∂t
= − ∂

∂xi
(ρui)

∂ρui
∂t

= − ∂

∂xj
(ρujui)−

∂p

∂xi
+
∂τij
∂xj

∂ρE

∂t
= − ∂

∂xj
(uj(ρE + p)) +

∂ujτji
∂xi

− ∂qi
∂xi

∂ρYk
∂t

= − ∂

∂xi
(uiρYk) +Mkω̇k −

∂jk,i
∂xi

, k = 1, . . . ,K − 1

Where ρ-density, ui-velocity vector, E-specific total energy, Yk-mass
fraction of species k, τij-viscous stress tensor, qi-heat flux, jk,i-species
mass flux, Mk- molecular weight of species k, and ω̇k-reaction rate of
species k.
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Compressible Reactive Flow (cont.)
Where,
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k=1
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τij = −2

3
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∂ul
∂xl
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∂ui
∂xj
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∂uj
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K∑
j=1,j 6=k

MjDkjdj,i −
DT
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T

∂T

∂xi

dk,i =
∂Xk

∂xi
+ (Xk − Yk)

1

p

∂p

∂xi
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Parallel Wavelet Adaptive Multiresolution

Representation

â Adaptive wavelet collocation
method uses a wavelet transform
to drive spatial grid adaption.

â PDEs solved using finite
differences and explicit time-
integration with error control.

â Parallel algorithm uses an MPI-
based domain decomposition.

â Chemkin-II and Transport
libraries used for evaluation
of thermodynamics, transport
properties, and reaction source
terms.
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2-D Viscous Detonation

Initial Conditions:

Domain: [0, 36]× [0, 6] cm
Front: x = 26.75 cm
Unreacted pocket:

[1.05× 1.43] cm
at x = 27.05 cm
P = 50 kPa
T = 2100 K

128 cores
24d:03h runtime

2H2 : O2 : 7Ar mixture
9 species, 37 reactions

Wavelet parameters:
ε = 1× 10−3

p = 6, n = 5
[Nx ×Ny]j0 = [360× 60]
J − j0 = 14
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2-D Viscous Detonation (cont.)
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2-D Viscous Detonation (cont.)
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Richtmeyer-Meshkov Instability

Initial Conditions:

Domain:
[0, 20]× [0, 1.08] cm

Ambient mixture:
YN2 = 0.99, YSF6 = 0.01
P = 79.5 kPa
T = 300 K

Ms = 1.2 Shock
at x = 5.0 cm

64 cores
4d:22h runtime

Varicose sheet at x = 6.3 cm
YN2 = 0.01, YSF6 = 0.99
Balakumar et al.
Phys. Fluids 20, 2008

Wavelet parameters:
ε = 1× 10−4

p = 6, n = 5
[Nx ×Ny]j0 = [200× 10]
J − j0 = 10
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Richtmeyer-Meshkov Instability (cont.)

=⇒ Shock Direction =⇒
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Richtmeyer-Meshkov Instability (cont.)

⇐ Reshock⇐
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Richtmeyer-Meshkov Instability – Grid

t = 390 µs t = 600 µs
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Summary

â The wavelet adaptive multiresolution method provides a means to
capture a wide range of scales present in multidimensional reactive
compressible flows.

â Parallel algorithm shows excellent scaling up to the maximum
number tested.

â Resolved solutions in large geometries require large computational
resources even with an adaptive method.

13



Wavelet Approximation in Domain [0, 1]d

Approximation of u(x) by the interpolating wavelet, a multiscale basis,
on x ∈ [0, 1]d is given by

u(x) ≈ uJ(x) =
∑

k

uj0,kΦJ0,k(x) +

J−1∑
j=J0

∑
λ

dj,λΨj,λ(x),

where x ∈ Rd, λ = (e,k) and Ψj,λ(x) ≡ Ψe
j,k(x).

• Scaling function:
Φj,k(x) =

d∏
i=1

φj,k(xi), ki ∈ κ0
j

• Wavelet function:
Ψe
j,k(x) =

d∏
i=1

ψeij,k(xi), ki ∈ κeij

where e ∈ {0, 1}d \ 0, ψ0
j,k(x) ≡ φj,k(x) and ψ1

j,k(x) ≡ ψj,k(x), and
κ0
j = {0, · · · , 2j} and κ1

j = {0, · · · , 2j − 1}.
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1-D Interpolating Scaling Function and Wavelet

Some properties of φj,k and ψj,k of order p (p ∈ N, even):

â φj,k is defined through φ(2jx−k) where φ(x) =
∫
ϕp(y)ϕp(y−x)dy,

the auto-correlation of the Daubechies wavelet ϕp(x).

â The support of φj,k is compact, i.e. supp{φj,k} ∼ |O(2−j)|.

â φj,k(xj,n = n2−j) = δk,n, i.e. satisfies the interpolation property.

â ψj,k = φj+1,2k+1.

â span{φj,k} = span{{φj−1,k}, {ψj−1,k}}.

â {1, x, · · · , xp−1}, for x ∈ [0, 1], can be written as a linear combination
of {φj,k, k = 0, · · · , 2j}.

â {{φJ0,k}, {ψj,k}∞j=J0
} forms a basis of a continuous 1-D function on

the unit interval [0, 1].
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Sparse Wavelet Representation (SWR) and

Irregular Sparse grid

â For a given threshold parameter ε, the multiscale approximation of
a function u(x) can be written as

u
J
(x) =

∑
k

uJ0,k
Φj0,k

(x) +

J−1∑
j=j0

∑
{λ : |dj,λ|≥ε}

dj,λΨj,λ(x)

+

J−1∑
j=j0

∑
{λ : |dj,λ|<ε}

dj,λΨj,λ(x)

︸ ︷︷ ︸
RJε

,

and the SWR is obtained by discarding the term RJε .

â For interpolating wavelets, each basis function is associated with one
dyadic grid point, i.e.

Φj,k(x) with xj,k = (k12−j, . . . , kd2
−j)

Ψj,λ(x) with xj,λ = xj+1,2k+e
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SWR and Irregular Sparse Grid (continued)

â For a given SWR, one has an associated grid composed of essential
points, whose wavelet amplitudes are greater than the threshold
parameter ε

Ve = {xj0,k,
⋃
j≥j0

xj,λ : λ ∈ Λj}, Λj = {λ : |dj,λ| ≥ ε}.

â To accommodate the possible advection and sharpening of solution
features, we determine the neighboring grid points:

Vb =
⋃

{j,λ∈Λ}

Nj,Λ,

where Nj,λ is the set of neighboring points to xj,λ.

â The new sparse grid, V, is then given by

V = xj0,k ∪ Ve ∪ Vb. 17



SWR and Irregular Sparse grid (continued)

â There exists an adaptive fast wavelet transform (AFWT), with
O(N), N = dim{V} operations, mapping the function values on
the irregular grid V to the associated wavelet coefficients and vice-
versa:

AFWT({u(x) : x ∈ V})→ D = {{uj0,k}, {dj,λ, λ ∈ Λj}j>j0}.

â Provided that the function u(x) is continuous, the error in the SWR
uJε (x) is bounded by

‖u− uJε ‖∞ ≤ C1 ε.

â Furthermore, for the function that is smooth enough, the number of
basis functions N = dim{uJε } required for a given ε satisfies

N ≤ C2 ε
−d/p, and ‖u− uJε ‖∞ ≤ C2 N

−p/d.
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Derivative Approximation of SWR

â Direct differentiation of wavelets is costly (with O(p(J − j0)N)
operations) because of different support sizes of wavelet basis on
different levels.

â Alternatively, we use finite differences to approximate the derivative
on a grid of irregular points. The procedure can be summarized as
follows:

¶ For a given SWR of a function, perform the inverse interpolating
wavelet transform to obtain the function values at the associated
irregular points.

· Apply locally a finite difference scheme of order n to approximate
the derivative at each grid point.

â Estimate shows that the pointwise error of the derivative
approximation has the following bound:

‖∂iu/∂xi −D(i)
x uJε ‖V,∞ ≤ CN−min((p−i),n)/2, ‖f‖G,∞ = max

x∈V
|f(x)|.
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Dynamically Adaptive Algorithm for Solving

Time-Dependent PDEs

Given the set of PDEs

∂u

∂t
= F (t, u, ux, uxx, . . .),

with initial conditions
u(x, 0) = u0.

¶ Obtain sparse grid, Vm, based on thresholding of magnitudes of
wavelet amplitudes of the approximate solution um.

· Integrate in time using an explicit time integrator with error control
to obtain the new solution um+1.

¸ Assign um+1 → um and return to step ¶.
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1-D Viscous Detonation
Initial conditions:
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2H2 : 1O2 : 7Ar mixture
9 species, 37 reactions

State 1: 0 m ≤ x < 0.06 m
ρ1 = 0.18075 kg m−3

P1 = 35594 Pa
u1 = 487.34 m s−1

State 2: 0.06 m ≤ x ≤ 0.12 m
ρ2 = 0.072 kg m−3

P2 = 7173 Pa
u2 = 0 m s−1

Wavelet parameters:
ε = 1× 10−4

p = 6, n = 4
j0 = 4, J − j0 = 15
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1-D Viscous Detonation (cont.)
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