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Project Summary

â An adaptive method is applied to problems in hypersonic propulsion.

â Compressible reactive Navier-Stokes model includes detailed
chemical kinetics, multi-species transport, momentum and energy
diffusion.

â These problems are typically multidimensional and contain a wide
range of spatial and temporal scales.

â Our adaptive wavelet method allows this range of scales to be
resolved while greatly reducing the required computer time and
automatically produces verified solutions.

Figure: Flameball-vortex interaction–
computed temperature field and
adaptive grid.
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Wavelet Approximation in Domain [0, 1]d

Approximation of u(x) by the interpolating wavelet, a multiscale basis,
on x ∈ [0, 1]d is given by

u(x) ≈ uJ(x) =
∑

k

uj0,kΦJ0,k(x) +
J−1∑
j=J0

∑
λ

dj,λΨj,λ(x),

where x ∈ Rd, λ = (e,k) and Ψj,λ(x) ≡ Ψe
j,k(x).

• Scaling function:
Φj,k(x) =

d∏
i=1

φj,k(xi), ki ∈ κ0
j

• Wavelet function:
Ψe
j,k(x) =

d∏
i=1

ψeij,k(xi), ki ∈ κeij

where e ∈ {0, 1}d \ 0, ψ0
j,k(x) ≡ φj,k(x) and ψ1

j,k(x) ≡ ψj,k(x), and
κ0
j = {0, · · · , 2j} and κ1

j = {0, · · · , 2j − 1}.
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1-D Interpolating Scaling Function and Wavelet

Some properties of φj,k and ψj,k of order p (p ∈ N, even):

â φj,k is defined through φ(2jx−k) where φ(x) =
∫
ϕp(y)ϕp(y−x)dy,

the auto-correlation of the Daubechies wavelet ϕp(x).

â The support of φj,k is compact, i.e. supp{φj,k} ∼ |O(2−j)|.

â φj,k(xj,n = n2−j) = δk,n, i.e. satisfies the interpolation property.

â ψj,k = φj+1,2k+1.

â span{φj,k} = span{{φj−1,k}, {ψj−1,k}}.

â {1, x, · · · , xp−1}, for x ∈ [0, 1], can be written as a linear combination
of {φj,k, k = 0, · · · , 2j}.

â {{φJ0,k}, {ψj,k}∞j=J0
} forms a basis of a continuous 1-D function on

the unit interval [0, 1].
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Sparse Wavelet Representation (SWR) and

Irregular Sparse grid

â For a given threshold parameter ε, the multiscale approximation of
a function u(x) can be written as

u
J
(x) =

X
k

uJ0,kΦj0,k(x) +

J−1X
j=j0

X
{λ : |dj,λ|≥ε}

dj,λΨj,λ(x)

+

J−1X
j=j0

X
{λ : |dj,λ|<ε}

dj,λΨj,λ(x)

| {z }
RJε

,

and the SWR is obtained by discarding the term RJε .

â For interpolating wavelets, each basis function is associated with one
dyadic grid point, i.e.

Φj,k(x) with xj,k = (k12−j, . . . , kd2−j)

Ψj,λ(x) with xj,λ = xj+1,2k+e
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SWR and Irregular Sparse Grid (continued)

â For a given SWR, one has an associated grid composed of essential
points, whose wavelet amplitudes are greater than the threshold
parameter ε

Ve = {xj0,k,
⋃
j≥j0

xj,λ : λ ∈ Λj}, Λj = {λ : |dj,λ| ≥ ε}.

â To accommodate the possible advection and sharpening of solution
features, we determine the neighboring grid points:

Vb =
⋃

{j,λ∈Λ}

Nj,Λ,

where Nj,λ is the set of neighboring points to xj,λ.

â The new sparse grid, V, is then given by

V = xj0,k ∪ Ve ∪ Vb. 6



Dynamic Spatially Adaptive Algorithm for

Solving Time-Dependent PDEs

Given the set of PDEs

∂u

∂t
= F (t, u, ux, uxx, . . .),

with initial conditions
u0 = u(x, 0).

¶ Obtain sparse grid, Vm, based on thresholding of magnitudes of
wavelet amplitudes of the approximate solution um.

· Integrate in time using an explicit time integrator with error control
to obtain the new solution um+1.

¸ Assign um+1 → um and return to step ¶.
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Compressible Reactive Flow

Code solves the n-D compressible reactive Navier-Stokes equations:
∂ρ

∂t
= − ∂

∂xi
(ρui)

∂ρui
∂t

= − ∂

∂xj
(ρujui)−

∂p

∂xi
+
∂τij
∂xj

∂ρE

∂t
= − ∂

∂xj
(uj(ρE + p)) +

∂ujτji
∂xi

− ∂qi
∂xi

∂ρYk
∂t

= − ∂

∂xi
(uiρYk) +Mkω̇k −

∂jk,i
∂xi

, k = 1, . . . ,K

Where ρ-density, ui-velocity vector, E-specific total energy, Yk-mass
fraction of species k, τij-viscous stress tensor, qi-heat flux, jk,i-species
mass flux, Mk- molecular weight of species k, and ω̇k-reaction rate of
species k.
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Compressible Reactive Flow (cont.)

Where,

E = e+
1
2
uiui

τij = −2
3
µ
∂ul
∂xl

δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)

qi = −k
∂T

∂xi
+

K∑
k=1

(
hkjk,i −

RT

mkXk
DT
k dk,i

)

jk,i =
ρYk

XkM

K∑
j=1,j 6=k

MjDkjdj,i −
DT
k

T

∂T

∂xi

dk,i =
∂Xk

∂xi
+ (Xk − Yk)

1
p

∂p

∂xi
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Compressible Reactive Flow (cont.)

â Model includes detailed chemical kinetics, multi-component and
thermal diffusion.

â Includes state-dependent specific heats and transport properties.

â CHEMKIN and TRANLIB libraries used for evaluation of transport
properties, thermodynamics, and chemical source terms.

â Recent solutions obtained using machines in the GX cluster at NASA
Glenn Research Center.
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Intrinsic Low-Dimensional Manifolds (ILDM)
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Strang Splitting

â A Strang splitting is included as an option.

â Time integration occurs as a 2-step process:

– Reaction step – ρ, u, and e are held constant and each spatial
point is considered as a homogeneous pre-mixed reactor.

– Advection-diffusion step – reactive source terms are suppressed,
and the inert system is integrated.

â Splitting allows for separate handling of reaction terms, such as with
the ILDM method.

â Time-step is controlled by the advection-diffusion step.

â Splitting is second-order accurate in time.
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Data Structure Improvements

â New data structure needed to reduce memory footprint and allow
straightforward use on parallel architectures.

â Partitioned hash table:

– Each process has a simple array storing the data elements.
– Location of elements found by evaluation of hash function (grid

indices → array index).
– Hash function generally not injective – collisions (multiple data

points mapped to same space in storage array) may occur.
– Collisions resolved by chaining – creating linked lists from storage

array, requires resizing array if chains become too long.

â Constant time data access for random data and worse case
proportional to collision chain length.

â Hilbert space-filling curve used as a hash function, may also be used
for domain partitioning/load balancing.
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Hilbert Space-Filling Curves

â Space-filling curves built from recursive
application of a basic pattern.

â Maps n-dimensional points onto a
1-dimensional curve.

â Retains spatial locality – points close in
space are close on the curve.

â Constructed by Morton ordering (bit-
interleaving) of spatial indices and
translation to Hilbert ordering by table
lookups.

Figure: Three levels of
Hilbert curve construction.
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Domain Partitioning and Dynamic

Load-Balancing

â Needed to equally distribute work among processes and furthermore,
to retain equal distribution as points are added or removed during
execution.

â Partitioning methods:

– Bisection – recursively subdivide data along medians of coordinate
directions, longest dimension, etc.

– Space-filling curve – trivial partitioning by dividing 1-d curve into
equal parts.

â Two major costs:

– Data movement – changing ownership of a point.
– Communications – amount of data that must be passed each time-

step.
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Comparison of Hilbert and Coordinate Bisection
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Comparison of Hilbert and Coordinate Bisection
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Domain Transformation
Initial conditions:

Geometry:
0 ≤ x < 1.045
H = 1.0

1.045 ≤ x < 1.91
30°incline

1.91 ≤ x ≤ 3.0
H = 0.5

2H2 : 1O2 : 7Ar mixture
9 species, inert

State 1: 0 ≤ x < 0.5
ρ1 = 2.77× 10−4 gm cm−3

P1 = 716400 dyne cm−2

u1 = 59849 cm s−1

State 2: 0.5 ≤ x ≤ 3.0
ρ2 = 8.44× 10−5 gm cm−3

P2 = 66700 dyne cm−2

u2 = 0 cm s−1

Wavelet parameters:
ε = 1× 10−3

p = 4, n = 2
j0 = 3, J − j0 = 6

18



Domain Transformation (cont.)
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Future Work

â Continue with coarse-grained message passing-based parallelization.

â Include dynamic load-balancing.

â Implement non-reflecting boundary conditions for problems in open
domains.

â Solve more complex problems with good experimental databases for
validation.
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Project Challenges

â To maintain time accuracy, time
step is restricted by finest spatial
grid size.

â We need better time integration
strategies, i.e. multiple time
stepping or a time-adaptive
method.

â Parallel domain decomposition
and load balancing is challenging
on an adaptive grid.

â Verified solutions with large
geometries require large
computational resources, even
with an adaptive method.
Powers and Paolucci AIAA J 2005;
Powers JPP 2006

“Research needs for future internal
combustion engines,”
Physics Today, Nov. 2008, pp 47-52.
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