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PROJECT SUMMARY

An adaptive method is applied to problems in hypersonic propulsion.

Compressible reactive Navier-Stokes model includes detailed
chemical kinetics, multi-species transport, momentum and energy
diffusion.

These problems are typically multidimensional and contain a wide
range of spatial and temporal scales.

Our adaptive wavelet method allows this range of scales to be
resolved while greatly reducing the required computer time and
automatically produces verified solutions.

Figure: Flameball-vortex interaction—
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WAVELET APPROXIMATION IN DOMAIN [0, 1]¢

Approximation of u(x) by the interpolating wavelet, a multiscale basis,
on x € [0,1]¢ is given by

u(x) & u’(x) = wjo D k(%) + Z Zdj AU (x
k

Jj=Jo

where x € R% A\ = (e, k) and U, \(x) = W (%)

e Scaling function:

d
X) = H qu,k(xq;), k; € /'ig-)
1=1

e Wayvelet function:

ijk r;), ki € /iefi

where e € {0,1}"\ 0, w;?,k@c) qu k() ‘cmd V; () = Pjk(z), and
k] ={0,---,2} and x; = {0,---,27 — 1}.



1-D INTERPOLATING SCALING FUNCTION AND WAVELET

Some properties of ¢, and 1, i of order p (p € N, even):

> ¢, 1 is defined through ¢(27x — k) where ¢(x) = [ v,p(y)pp(y — )dy,
the auto-correlation of the Daubechies Wavelet ©p(T).

> The support of ¢; is compact, i.e. supp{¢p;r}t ~ |O(277)].

> ¢ p(xjn =n277) = O.p, i.e. satisfies the interpolation property.

> Yk = Qj11.2k+1

> span{¢; i} = span{{®j_1 x}, {Vj—1,k}}-

> {1,z,---, 2P~ 1} for x € [0, 1], can be written as a linear combination
of {¢jr, k=0,---,27}.

> {{dJ,k} {zpj,k};?‘;JO} forms a basis of a continuous 1-D function on
the unit interval [0, 1].



SPARSE WAVELET REPRESENTATION (SWR) AND
IRREGULAR SPARSE GRID

> For a given threshold parameter €, the multiscale approximation of
a function u(x) can be written as

’U,J(X) Zujo k(I)JO k(X) —|— Z Z d")\\Ifj’)\(X)

J=30 {X: |d; a|=¢e}

J—1
+> D diavinax),

J=do IA+ ld; x| <<}

J/

RrY
and the SWR is obtained by discarding the term R/.

> For interpolating wavelets, each basis function is associated with one
dyadic grid point, i.e.

(I)j,k(X) with Xik — (k12_‘j7 e ooy de—j)

Uia(x) with  Xjx = Xj41 2kte



SWR AND IRREGULAR SPARSE GRID (CONTINUED)

> For a given SWR, one has an associated grid composed of essential
points, whose wavelet amplitudes are greater than the threshold
parameter €

Ve={Xjoso [J x50 - A€M} Aj={X: |dja| > e}

J =70

> To accommodate the possible advection and sharpening of solution
features, we determine the neighboring grid points:

Vy = U Nj A,

where N x is the set of neighboring points to x; x.

> The new sparse grid, V, is then given by



DYNAMIC SPATIALLY ADAPTIVE ALGORITHM FOR
SOLVING TIME-DEPENDENT PDES

Given the set of PDEs
)
6—7: = F(t,u, Ug, Ugs, - - -),

with initial conditions
u’ = u(z,0).

® Obtain sparse grid, V", based on thresholding of magnitudes of
wavelet amplitudes of the approximate solution u".

® Integrate in time using an explicit time integrator with error control
to obtain the new solution »™* 1.

® Assign u™ ! — 4™ and return to step ©.



COMPRESSIBLE REACTIVE FLOW

Code solves the n-D compressible reactive Navier-Stokes equations:

dp 0

ot ox, (pus;)
= gy )~ g g
az[))—f B —(% (uj(pE + p)) + ag;:ﬁ _ gzi
8?9? - _ai (uipYi) + My — %Zj k=1,.... K

Where p-density, u;-velocity vector, E-specific total energy, Yi-mass
fraction of species k, 7;;-viscous stress tensor, g;-heat flux, ji ;-species
mass flux, M- molecular weight of species k, and wj-reaction rate of
species k.



COMPRESSIBLE REACTIVE FLOW (CONT.)

Where,
1
E = e—l—ﬁuiuz
2 8u15 Ou;  Ou,
Ty — T )
I 392, T\ 0z, T Oay
0T RT
i = —k ki — Dy, dp
q (95137;+,;( kJk, X,k k)
Jki = — M;Dy;dji — 5
XM Pl T Ox;
0X 10
dr,i = C (X - Ya)- P




COMPRESSIBLE REACTIVE FLOW (CONT.)

> Model includes detailed chemical kinetics, multi-component and
thermal diffusion.

> Includes state-dependent specific heats and transport properties.

> CHEMKIN and TRANLIB libraries used for evaluation of transport
properties, thermodynamics, and chemical source terms.

> Recent solutions obtained using machines in the GX cluster at NASA
Glenn Research Center.
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INTRINSIC LOW-DIMENSIONAL MANIFOLDS (ILDM)
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STRANG SPLITTING

> A Strang splitting is included as an option.
> Time integration occurs as a 2-step process:

— Reaction step — p, u, and e are held constant and each spatial
point is considered as a homogeneous pre-mixed reactor.

— Advection-diffusion step — reactive source terms are suppressed,
and the inert system is integrated.

> Splitting allows for separate handling of reaction terms, such as with
the ILDM method.

> Time-step is controlled by the advection-diffusion step.

> Splitting is second-order accurate in time.
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DATA STRUCTURE IMPROVEMENTS

> New data structure needed to reduce memory footprint and allow
straightforward use on parallel architectures.

> Partitioned hash table:

— Each process has a simple array storing the data elements.

— Location of elements found by evaluation of hash function (grid
indices — array index).

— Hash function generally not injective — collisions (multiple data
points mapped to same space in storage array) may occur.

— (ollisions resolved by chaining — creating linked lists from storage
array, requires resizing array if chains become too long.

> (Constant time data access for random data and worse case
proportional to collision chain length.

> Hilbert space-filling curve used as a hash function, may also be used
for domain partitioning/load balancing.
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HiLBERT SPACE-FILLING CURVES

Space-filling curves built from recursive
application of a basic pattern.

Maps n-dimensional points onto a
1-dimensional curve. \

Retains spatial locality — points close in |
space are close on the curve. J

Constructed by Morton ordering (bit-
interleaving) of spatial indices and
translation to Hilbert ordering by table
lookups.

Figure: Three levels of
Hilbert curve construction.

14



DOMAIN PARTITIONING AND DYNAMIC
LOAD-BALANCING

> Needed to equally distribute work among processes and furthermore,
to retain equal distribution as points are added or removed during
execution.

> Partitioning methods:

— Bisection — recursively subdivide data along medians of coordinate
directions, longest dimension, etc.

— Space-filling curve — trivial partitioning by dividing 1-d curve into
equal parts.

> Two major costs:

— Data movement — changing ownership of a point.
— Communications — amount of data that must be passed each time-
step.
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COMPARISON OF HILBERT AND COORDINATE BISECTION

Density

Partitions - Hilbert Curve

©o o oo

© O«

Partitions - Recursive Coordinate
Bisection
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COMPARISON OF HILBERT AND COORDINATE BISECTION
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DOMAIN TRANSFORMATION
2Hs : 105 : TAr mixture

Initial conditions:
1
9 species, inert

State 1: 0 <z < 0.5
p1 = 2.77 x 107* gm em ™3

i P, = 716400 dyne cm ™2
uy = 59849 ¢m s~ 1!

State 2: 0.5 <z <3.0
0y = 844 x 107° gm em ™3

Geometry:
0<x<1.045
__x P, = 66700 dyne cm ™2
H=1.0 —1
us =0cm s

Wavelet parameters:

1.045 < x < 1.91
30°incline -
e=1x 1073
=4, n=2
1.91 < 2 < 3.0 pP=% |
]O:37 ']_.]026

H=0.5
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DOMAIN TRANSFORMATION (CONT.)
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FUTURE WORK

> (Continue with coarse-grained message passing-based parallelization.
> Include dynamic load-balancing.

> Implement non-reflecting boundary conditions for problems in open
domains.

> Solve more complex problems with good experimental databases for
validation.
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ProJECcT CHALLENGES

To maintain time accuracy, time
step is restricted by finest spatial
grid size.

We need better time integration

strategies, 7.e. multiple time
stepping or a time-adaptive
method.

Parallel domain decomposition
and load balancing is challenging
on an adaptive grid.

Verified solutions with large
geometries require large
computational resources, even
with an adaptive method.

Powers and Paolucci AIAA J 2005;
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