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Project Description

â An adaptive method is applied to problems in hypersonic propulsion.

â Compressible reactive Navier-Stokes model includes detailed
chemical kinetics, multi-species transport, momentum and energy
diffusion.

â These problems are typically multidimensional and contain a wide
range of spatial and temporal scales.

â Our adaptive wavelet method allows this range of scales to be
resolved while greatly reducing the required computer time and
automatically produces verified solutions.

Figure: Flameball-vortex interaction–
computed temperature field and
adaptive grid.
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Adaptive Wavelet Method

â The sparse wavelet transform (SWR) provides a multiscale
representation of the solution:

uJ(x) =
∑

k

uJ0,kΦj0,k(x) +
J−1∑
j=j0

∑
{λ : |dj,λ|≥ε}

dj,λΨj,λ(x). (1)

â Since each basis function in (1) is related to a single dyadic grid
point, the SWR is used to define a sparse grid of irregular points.

â Finite differences are used for derivative approximations.

â Solution is advanced in time using an explicit ODE solver with error
control.
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Compressible Reactive Flow

â n-dimensional code is implemented.

â Model includes detailed chemical kinetics, multi-component and
thermal diffusion.

â Includes state-dependent specific heats and transport properties.

â CHEMKIN and TRANLIB libraries used for evaluation of transport
properties, thermodynamics, and chemical source terms.
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1-D Viscous Detonation
Initial conditions:
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2H2 : 1O2 : 7Ar mixture
9 species, 37 reactions

State 1: 0 m ≤ x < 0.06 m
ρ1 = 0.18075 kg m−3

P1 = 35594 Pa
u1 = 487.34 m s−1

State 2: 0.06 m ≤ x ≤ 0.12 m
ρ2 = 0.072 kg m−3

P2 = 7173 Pa
u2 = 0 m s−1

Wavelet parameters:
ε = 1× 10−4

p = 6, n = 4
j0 = 4, J − j0 = 15
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1-D Viscous Detonation (cont.)
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Demonstration of a Verified Solution:

Taylor/Sedov Blast Wave

78N2 : 21O2 : 1Ar (air) mixture
3 species, inert

ρ(x, 0) = 3× 10−5 gm cm−3

u(x, 0) = 0 cm s−1

P0 = 1× 104 dyne cm−2

Pmax/P0 = 50
P (x, 0) = P0 + Pmax exp(−500‖x/L‖2)
L = 100 µm

Wavelet parameters:
ε = 1× 10−3

p = 6, n = 4
j0 = 3, J − j0 = 9 (1-d), 6 (2-,3-d)
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Demonstration of a Verified Solution:

Taylor/Sedov Blast Wave (cont.)
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1d − Numerical
1d − Analytical 
2d − Numerical
2d − Analytical
3d − Numerical
3d − Analytical

r(t) =
(
E
ρ0

)a
t2a

a = (2 + d)−1

d a-Analytical a-Numerical
1 0.6667 0.6645
2 0.5000 0.4842
3 0.4000 0.3979
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2-D Flameball
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2H2 : 1O2 : 7Ar mixture
9 species, 37 reactions
x0 = (32.5µm, 17.5µm)
r = ‖x− x0‖2
u = 0 cm s−1

State 1: r > 12.5 µm
ρ1 = 1.265 kg m−3

T1 = 300 K

State 2: r ≤ 12.5 µm
ρ2 = 1.265 kg m−3

T2 = 3530 K

Wavelet parameters:
ε = 1× 10−3

p = 6, n = 4
j0 = 3, J − j0 = 7
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2-D Flameball (cont.)
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Runtime Comparisons

Case Na Nf tadap tfull Speedup
(hr) (hr)

1-D Detonation 275 2.6× 105 343 3.3× 105 950
1-D Blast Wave 305 4.1× 103 0.06 0.8× 100 13
2-D Blast Wave 2566 2.6× 105 0.83 8.5× 101 102
3-D Blast Wave 23084 1.3× 108 29.5 1.7× 105 5800
2-D Flameball 12784 1.0× 106 29 2.4× 103 82

Na - average number of points in adaptive grid
Nf - total number of points in equivalent uniform grid
tadap - runtime of adaptive routine [CPU hr]
tfull - est. runtime of routine with equivalent full grid [CPU hr]
Speedup - tfull/tadap
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Summary

â An adaptive wavelet method
is successfully applied to
compressible reacting flows in
multiple dimensions.

â The method is shown to provide
large speedup in problems in
multiple dimensions or with a
wide range of scales.

â Verified solutions with large
geometries require large
computational resources, even
with an adaptive method.
Powers and Paolucci AIAA J 2005;
Powers JPP 2006

“Research needs for future internal
combustion engines,”
Physics Today, Nov. 2008, pp 47-52.
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Wavelet Approximation in Domain [0, 1]d

Approximation of u(x) by the interpolating wavelet, a multiscale basis,
on x ∈ [0, 1]d is given by

u(x) ≈ uJ(x) =
∑

k

uj0,kΦJ0,k(x) +
J−1∑
j=J0

∑
λ

dj,λΨj,λ(x),

where x ∈ Rd, λ = (e,k) and Ψj,λ(x) ≡ Ψe
j,k(x).

• Scaling function:
Φj,k(x) =

d∏
i=1

φj,k(xi), ki ∈ κ0
j

• Wavelet function:
Ψe
j,k(x) =

d∏
i=1

ψeij,k(xi), ki ∈ κeij

where e ∈ {0, 1}d \ 0, ψ0
j,k(x) ≡ φj,k(x) and ψ1

j,k(x) ≡ ψj,k(x), and
κ0
j = {0, · · · , 2j} and κ1

j = {0, · · · , 2j − 1}.
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1-D Interpolating Scaling Function and Wavelet

Some properties of φj,k and ψj,k of order p (p ∈ N, even):

â φj,k is defined through φ(2jx−k) where φ(x) =
∫
ϕp(y)ϕp(y−x)dy,

the auto-correlation of the Daubechies wavelet ϕp(x).

â The support of φj,k is compact, i.e. supp{φj,k} ∼ |O(2−j)|.

â φj,k(xj,n = n2−j) = δk,n, i.e. satisfies the interpolation property.

â ψj,k = φj+1,2k+1.

â span{φj,k} = span{{φj−1,k}, {ψj−1,k}}.

â {1, x, · · · , xp−1}, for x ∈ [0, 1], can be written as a linear combination
of {φj,k, k = 0, · · · , 2j}.

â {{φJ0,k}, {ψj,k}∞j=J0
} forms a basis of a continuous 1-D function on

the unit interval [0, 1].
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Sparse Wavelet Representation (SWR) and

Irregular Sparse grid

â For a given threshold parameter ε, the multiscale approximation of
a function u(x) can be written as

u
J
(x) =

X
k

uJ0,kΦj0,k(x) +

J−1X
j=j0

X
{λ : |dj,λ|≥ε}

dj,λΨj,λ(x)

+

J−1X
j=j0

X
{λ : |dj,λ|<ε}

dj,λΨj,λ(x)

| {z }
RJε

,

and the SWR is obtained by discarding the term RJε .

â For interpolating wavelets, each basis function is associated with one
dyadic grid point, i.e.

Φj,k(x) with xj,k = (k12−j, . . . , kd2−j)

Ψj,λ(x) with xj,λ = xj+1,2k+e
15



SWR and Irregular Sparse Grid (continued)

â For a given SWR, one has an associated grid composed of essential
points, whose wavelet amplitudes are greater than the threshold
parameter ε

Ve = {xj0,k,
⋃
j≥j0

xj,λ : λ ∈ Λj}, Λj = {λ : |dj,λ| ≥ ε}.

â To accommodate the possible advection and sharpening of solution
features, we determine the neighboring grid points:

Vb =
⋃

{j,λ∈Λ}

Nj,Λ,

where Nj,λ is the set of neighboring points to xj,λ.

â The new sparse grid, V, is then given by

V = xj0,k ∪ Ve ∪ Vb. 16



SWR and Irregular Sparse grid (continued)

â There exists an adaptive fast wavelet transform (AFWT), with
O(N), N = dim{V} operations, mapping the function values on
the irregular grid V to the associated wavelet coefficients and vice-
versa:

AFWT({u(x) : x ∈ V})→ D = {{uj0,k}, {dj,λ, λ ∈ Λj}j>j0}.

â Provided that the function u(x) is continuous, the error in the SWR
uJε (x) is bounded by

‖u− uJε ‖∞ ≤ C1 ε.

â Furthermore, for the function that is smooth enough, the number of
basis functions N = dim{uJε } required for a given ε satisfies

N ≤ C2 ε
−d/p, and ‖u− uJε ‖∞ ≤ C2 N

−p/d.
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Derivative Approximation of SWR

â Direct differentiation of wavelets is costly (with O(p(J − j0)N)
operations) because of different support sizes of wavelet basis on
different levels.

â Alternatively, we use finite differences to approximate the derivative
on a grid of irregular points. The procedure can be summarized as
follows:

¶ For a given SWR of a function, perform the inverse interpolating
wavelet transform to obtain the function values at the associated
irregular points.

· Apply locally a finite difference scheme of order n to approximate
the derivative at each grid point.

â Estimate shows that the pointwise error of the derivative
approximation has the following bound:

‖∂iu/∂xi −D(i)
x uJε ‖V,∞ ≤ CN−min((p−i),n)/2, ‖f‖G,∞ = max

x∈V
|f(x)|.
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Dynamically Adaptive Algorithm for Solving

Time-Dependent PDEs

Given the set of PDEs

∂u

∂t
= F (t, u, ux, uxx, . . .),

with initial conditions
u0 = u(x, 0).

¶ Obtain sparse grid, Vm, based on thresholding of magnitudes of
wavelet amplitudes of the approximate solution um.

· Integrate in time using an explicit time integrator with error control
to obtain the new solution um+1.

¸ Assign um+1 → um and return to step ¶.
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Compressible Reactive Flow

Code solves the n-D compressible reactive Navier-Stokes equations:
∂ρ

∂t
= − ∂

∂xi
(ρui)

∂ρui
∂t

= − ∂

∂xj
(ρujui)−

∂p

∂xi
+
∂τij
∂xj

∂ρE

∂t
= − ∂

∂xj
(uj(ρE + p)) +

∂ujτji
∂xi

− ∂qi
∂xi

∂ρYk
∂t

= − ∂

∂xi
(uiρYk) +Mkω̇k −

∂jk,i
∂xi

, k = 1, . . . ,K

Where ρ-density, ui-velocity vector, E-specific total energy, Yk-mass
fraction of species k, τij-viscous stress tensor, qi-heat flux, jk,i-species
mass flux, Mk- molecular weight of species k, and ω̇k-reaction rate of
species k.

20



Compressible Reactive Flow (cont.)

Where,

E = e+
1
2
uiui

τij = −2
3
µ
∂ul
∂xl

δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)

qi = −k
∂T

∂xi
+

K∑
k=1

(
hkjk,i −

RT

mkXk
DT
k dk,i

)

jk,i =
ρYk

XkM

K∑
j=1,j 6=k

MjDkjdj,i −
DT
k

T

∂T

∂xi

dk,i =
∂Xk

∂xi
+ (Xk − Yk)

1
p

∂p

∂xi
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Project Challenges

â To maintain time accuracy, time
step is restricted by finest spatial
grid size.

â We need better time integration
strategies, i.e. multiple time
stepping or a time-adaptive
method.

â Parallel domain decomposition
and load balancing is challenging
on an adaptive grid.

â Verified solutions with large
geometries require large
computational resources, even
with an adaptive method.
Powers and Paolucci AIAA J 2005;
Powers JPP 2006

“Research needs for future internal
combustion engines,”
Physics Today, Nov. 2008, pp 47-52.
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Future Work

â Perform coarse-grained message passing-based parallelization.

â Improve data structure, maintaining constant-time data access.

â Implement non-reflecting boundary conditions for problems in open
domains.

â Include generalized coordinates/domain transformation for
non-Cartesian geometries.
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Figure: Solution and
adaptive grid for a test
problem in an irregular
domain.

â Solve more complex problems with good experimental databases for
validation.
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