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INTRODUCTION

Solutions of many physical problems, formulated as PDEs, may
contain sharp local variations in space, whose location may vary
with time, in otherwise smooth solutions.

Since high resolution is needed to resolve such features, accurate
numerical simulations using uniform grids require a large number of

degrees of freedoms (DOFs).

The number of DOFs for a uniform grid discretization is O(N?) for
problems in d spatial dimensions.

To reduce the DOFs required, while maintaining solution accuracy,
adaptive discretization becomes necessary.

Such task may be accomplished by use of AMR or adaptive FEM,
where the refinement is based upon some error estimators/indicators.

Alternatively, we tackle such task by using an adaptive wavelet
method. The method makes use of a wavelet multiscale basis in
the design of the refinement strategy.



WAVELET APPROXIMATION IN DOMAIN [0, 1]¢

Approximation of u(x) by the interpolating wavelet, a multiscale basis,
on [0, 1]¢ is given by

u() ~ 0 (%) = S upasoix) + 30 3 diatia(x),

j=Jogp A
where (x,k) € R% X = (e, k), and ¥, \(x) = W (%)

e Scaling function:

d
®ji(x) = | | ¢iul@i), ki € w3,
i=1

e

e Wavelet function: ..
(x) = H e

1=1
where e € {0,1}9\ 0, ¥}, (x) = ¢;r(x) and ¢, () = P;r(x), and &j =
{0,...,2} and x; ={0,...,27 — 1}.



1-D INTERPOLATING SCALING FUNCTION AND WAVELET

Some properties of ¢, ; and 1), i of order p (p € N, even):

= ¢ is defined through ¢(272 — k) where ¢(z) = [ p,(y)ep(y — z)dy,
the auto-correlation of the Daubechies scahng function ¢, (x).

= The support of ¢, is compact, i.e. supp{®;r} ~ [O(277)].

= @k (T50 =n277) = Ok, i.e. satisfies the interpolation property.

Y )ik = Qj1,2k+1-

= span{@; i} = span{{@;_1k}, \Vj—1,k}}-

s {1,2,---,2P~ 1}, for x € [0, 1], can be written as a linear combination
of {¢jr, k=0,---,27}.

= {{dJj, Kk} {zpj,k};?‘;JO} forms a basis of a continuous 1-D function on
the unit interval [0, 1].



WAVELET AMPLITUDES
e Wavelet amplitude, |d; x|, measures the approximation error of f(x)

by a local polynomial approximation at the point x; x.
e In other words, wavelet amplitudes, d; x, indicate the local regularity

of a function.

Example: Consider u(x,y) = AFWT (u)
0.2/(]0.4 — z* — y*| + 0.2)

0.0 0.2 0.4 0.6 0.8 1.0
X

y 800 X Grid points correspond to wavelet amplitudes that

are larger than e = 5 x 107°.



SPARSE WAVELET REPRESENTATION (SWR) AND
IRREGULAR SPARSE GRID

1= For a given threshold parameter ¢, the multiscale approximation of
a function u(x) can be written as

uJ(X) Zujo k(I)JO k(X) —|— Z Z d',)\\Ifj’)\(X)

j JO {A |d]}\|>€}

J—1
+ Z Z dj’)\\Ifj,)\(X) .

J=Jop {A: |dj,)\|<€}

J/

RrY

= The Sparse Wavelet Representation (SWR) is obtained by discarding
the term R/:

J—1
ZuJo,kq)JO,k(X) + Z Z dj,)\\Ifj7>\(X).
k

g=Jo{X:|djA|>e}



SWR AND IRREGULAR SPARSE GRID (CONTINUED)

1 In the context of interpolating wavelets, each basis function is associated
with one dyadic grid point, i.e.

®;x(x) with xjp = (k1277,... ka2,

Tia(x) with Xjx =Xj112k+e.

1 Thus, for a given SWR, one can establish an associated grid of irregular
points

V={xXpwUiznXix : A€ Al Aj={X: |djx] > €}

1= Due to the interpolation property of the basis, there exists a fast wavelet
transform (AFWT), with O(N) operations, N = dim{V}, that maps
function values on the irregular grid V to associated wavelet coeflicients
and vice-versa:

AFWT(H{u(x) : x € V}) = D= {{uj,x},{djr, A€ Aj}}.



SWR AND IRREGULAR SPARSE GRID (CONTINUED)

= Provided that the function u(x) is continuous, the error in the SWR
u? (x) is bounded by

S

|lu — u;]HOO < (Cf e.

1= Furthermore, for a function that is sufficiently smooth, the number
of basis functions N = dim{u/} required for a given ¢ satisfies

N < 02 S_d/p,
so that we also have

Ju— ] < Co NP/



DYNAMICALLY ADAPTIVE ALGORITHM FOR SOLVING
TIME-DEPENDENT PDES

Numerical algorithm:

ou
5 = F(t,u, g, Ugg, - - .)
— ATmthymtt = FmtlgmAl ymea gymed ) g =0,...,m (1)

1

@ Solve (1) to obtain the approximate solution ©v™*' on the irregular
™m

grid V" by using the solution from the previous time step, u™, as
initial condition.

@ Obtain the new sparse grid, V", based on the thresholding of the
magnitudes of wavelet amplitudes of the new solution, u™* 1.

® Assign V" — V™ and v — ™9 g = 0,...,m and go
back to step @.

Note: The initial sparse grid set, V', is obtained from initial conditions.



(GRID ADAPTION STRATEGY

1= In each refinement step, determine the essential grid points, which
are points whose associated wavelet amplitudes are larger than the
threshold parameter «:

Ve={x;x: j>Jo, A€ Aj, |d;x > e}

iz To accommodate the possible advection and sharpening of solution
features, we determine the neighboring grid points:

Vo= |J N,

{j,AEA}

where N » is the set of neighboring points to x; x.

i The new sparse grid, V), is then given by

V= {x;,x} UV. UV,
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APPLICATIONS TO REACTIVE COMPRESSIBLE
NAVIER-STOKES EQUATIONS

GOVERNING EQUATIONS (1-D):

dp 0 B
8t+8x(pu)_o
0 0 5 B
a(pu)%—%(pu +P—-7)=0
9, u? 9, u?
a(p(e%—?)) —|—%(pu (e+?> —|—u(P—T)+q> =0
o

0
Yi) + =— (puY; + 7:) = w;
)+ax(pu + ji) = w
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APPLICATIONS TO REACTIVE COMPRESSIBLE

NAVIER-STOKES EQUATIONS (CONTINUED)
CONSTITUTIVE EQUATIONS:

N
Y;
P = pRT thermal equation of state
p Z:; V7 ( q )
N T A A P
e = Z Y | hy + cpi(1T)dT | — — (caloric equation of state)
i=1 To P
4 Ou , , ,
T = g,ua— (Newtonian gas with Stokes’ assumption)
x
N
oY
o= = D;j—> (Fick’s law
J P ; . ( )
T & T
qg = —ka - Z gi | hi + cpi(1)dT (augmented Fourier’s law)
—1 To
M N vy
. g _Ej ka kj .
w; = Z a; 1”7 exp (W) v M; H (E) (reaction rate)
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OPERATOR SPLITTING

SYSTEM OF EQUATIONS:

qt(CE’ t) + fa:(q(wa t)) — r(q(w, t)),

5 T
where q = (p, pU, P (e + %) : pYZ-) . Note that f models convection and
diffusion, while r models the reaction source terms.

STRANG SPLITTING:
i Inert convection-diffusion integration (AB2):

qt(xat) - = x(q(a:,t)) — SC(q(mvt)>7

i Reaction source integration (BD2):

ai(z,t) = r(q(z, 1) = S,.

1= Time integration:

a(z,t + At) = S, (At/2)S.(A)S,(AL/2)q(z, t).
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OPERATOR SPLITTING (CONTINUED)

THE REACTION SOURCE STEP

[ r ) [0
o pu [ o
ot| ple+% | 0

\ (pY%Z)) “

REDUCES TO

p:p07 U:UO, 6260, - —.

NOTE:

I w HAS DEPENDENCY ON p, e, AND Y;.

i ODES FOR Y; CAN BE SOLVED POINTWISE.



IGNITION DELAY PROBLEM

PREMIXED Hs-Os-Ar IN 2/1/7 MOLAR RATIO
9 SPECIES: Ho, 02, H, O, OH, HQOQ, HQO, HOQ, Ar
37 REACTIONS:

j  Reaction aj B; E;

1 O,+H—OH+O 2.00 x 10 0.00 70.30
2 OH+0—0,+H 1.46x 1013 0.00 2.08
3 H,+O—OH+H 5.06x 10*  2.67 26.30
4 OH+H—H;+O0O 2.24x 10 2.67 18.40
5 H,+OH—H,0+H 1.00 x 108 1.60 13.80
6 H,O+H—H,+O0H 4.45 x 108 1.60 77.13
7 OH+OH—H,0+0 1.50x 10°  1.14 0.42
8 H,0+0—O0H+OH 1.51x 1010 1.14 71.64
9 H+H+M—>H,+M 1.80 x 101% —1.00 0.00
10 H+M—H+H+M 6.99x 1018 —1.00 436.08
11 H+OH+M—H0+M 2.20% 102 -2.00 0.00
12 HO+M—H+OH+M 3.80x 108 —2.00 499.41
13 0+0+M—0,+M 2.90 x 1017 —1.00 0.00
14 0,+M—0+0+M 6.81x 1018 —1.00 496.41
15 H+0,+M—HO;+M 2.30 x 101 —0.80 0.00
16 HO;,+M—H+0,+M 3.26x 1018 —0.80 195.88
17 HO, +H— OH +OH 1.50 x 10 0.00 4.20
18 OH+OH—HO, +H 1.33%x 1013 0.00 168.30
19 HO;+H—H; +0, 2.50% 1013 0.00 2.90

j  Reaction a; B; Ej
20 H,+0,—HO,+H 6.84x 1013 0.00 243.10
21 HO, +H—H,0+0 3.00x 1013 0.00 7.20
22 H,0+0—HO, +H 2.67x 1013 000 242.52
23 HO,+0O—OH+0, 1.80x 1013 000 -1.70
24 OH+0,— HO,;+0 2.18x 1013 0.00 230.61
25 HO, + OH— H,0 + 0O, 6.00 x 1013 0.00 0.00
26 H,O0+0, —HO, +O0H 7.31%x 10 0.00 303.53
27  HO, + HO;— H,0, + 0, 2.50% 101 0.00 -5.20
28 OH+OH+M—H;0,+M 3.25x 102 -2.00 0.00
29 HO0,+M—OH+OH+M 2.10x 10%* -2.00 206.80
30 H,0, +H—H, +HO; 1.70 x 1012 0.00 15.70
31 H;+HO,— H,0,+H 1.15% 102 0.00 80.88
32 H,0,+H—H,0+0OH 1.00x 1013 0.00 15.00
33 H,0+0H— H;0, +H 2.67%x 1012 0.00 307.51
34  Hp0, + O — OH + HO, 2.80x 1013 0.00 26.80
35 OH+HO,— H;0,+0 8.40 x 102 0.00 84.09
36 Hy0, + OH— H,0 + HO, 5.40 x 102 0.00 420
37 H,0+HO, — H,0, + OH 1.63x 1013 0.00 132.71

Table  Nine-species, 37-step reaction mechanism for a hydrogen—oxygen—argon mixture [25]
with corrected f y, from [3], also utilized by Fedkiw et al [16]. Units of a; are in appropriate

3. 1.

combinations of cm, mol, s and K so that w; has units of mol cm™~ s™ *; units of E; are kJ mol™ 1,
Third-body collision efficiencies with M are f 4, = 1.00,f o, = 0.35 and f 4,0 = 6.5.
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t =230 us
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Pressure (Pa)

LARGE AND SMALL SCALE STRUCTURES AT t = 230 us

Global View Fine Scale Structure
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INSTANTANEOUS DISTRIBUTION OF COLLOCATION POINTS

USED AT MOST 300 POINTS AND 15 SCALE LEVELS

t = 180 ps TWO-SHOCKS AND AT t = 230 us ONE-SHOCK (DETONATION).
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APPLICATIONS TO INCOMPRESSIBLE NAVIER-STOKES

(GOVERNING EQUATIONS:

V- -u

ou
E‘FU'VU_

oT
s VT
atJruV

EQUATIONS

0,
| Gr
— — — —T
Vp+R€Vu T2 n,
1 2
T
RePrv ’

WITH APPROPRIATE BOUNDARY AND INITIAL CONDITIONS.

=" n IS THE UNIT VECTOR IN THE DIRECTION OF GRAVITY.

s Re=UL/v, Gr = gBATL?/v?, AND Pr =v/a.

Note: L, U, L/U, AND AT ARE REFERENCE LENGTH, VELOCITY,
TIME, AND TEMPERATURE SCALES, AND T' = (T* —T,.)/AT.
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2ND ORDER FRACTIONAL STEP METHOD

STEP ©. COMPUTE THE TEMPERATURE FIELD:

Tm—l-l L Tm
At

1
b VT4 = Sl T,

2RePr

_ AT
WHERE 0 = (14+7)u” —ru™ ' WiTH r = ~ At = t™T ™ AT =t —t™

STEP @. SOLVE FOR THE INTERMEDIATE VELOCITY U:

u—u”

T L™y,
~: ( +T)

2u v v P 2Re v 2Re?

STEP ®. DETERMINE THE TRUE VELOCITY u™t1!:

u"tt — 4= —At Vo,
— V?’¢=(V-1)/At.
V- -u"tt =0,

STEP @. WHEN NEEDED, COMPUTE THE PRESSURE FIELD:

m+1l  ~ . 2
D =p+¢—1/2y/Ra/Pr AtV~¢. .



2-D DIFFERENTIALLY HEATED CAVITY

u:sz,%—:g:O
H
u = u=20
v = Q v=20
T:Th T:Tc

Y

— .

u:v:(),%—:g:()

e F'OR A SQUARE CAVITY, H =

BY

o ANT'=1T;, —T. AND T, = (Th—I—TC)/Q,
1y > 1T..

e H., U = +/BgATH, AT, AND
H/U ARE USED AS REFERENCE
LENGTH, VELOCITY, TEMPERATURE,
AND TIME SCALES.

e Re* = Gr = Ra/Pr, WHERE
THE RAYLEIGH NUMBER Ra =
BgATH? V2.

L, Q= (0,1)> AND BCS ARE GIVEN

u=0, oN z=0,1 AND y =0, 1,

1
T:§—aj, ON z=0,1

OT
AND — =0 oN y =0, 1.
oy
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NUMERICAL SIMULATIONS

5 THE ADAPTIVE WAVELET METHOD IS APPLIED TO COMPUTE THE FLOW
OF AIR (Pr = 0.71) IN A SQUARE CAVITY FOR Ra = 10° TO 5 x 10°%.

= [N EACH CASE, THE INITIAL CONDITION IS CHOSEN TO BE THAT OF
THE PURE CONDUCTING QUIESCENT STATE (i.e. T'(x,0) = 1/2—x AND
u(x,0) =0).

1= THE STEADY STATE, IF IT EXISTS, IS REACHED THROUGH UNSTEADY
INTEGRATION IN TIME SATISFYING

|‘fm+1 - meVm,oo

<5x 1077,
[ lym oo

WHERE f = {u,T}.

PARAMETERS OF THE ADAPTIVE METHOD:

INTERPOLATING WAVELET : p =06 WITH n = 4.
RESOLUTION : Jog=3, J—Jy=06.
THRESHOLD : € =107 AND 5 x 1073. ’




RESULTS FOR Ra = 10°

STEADY STATE SOLUTION FOR € = 1073, N = 8791

VELOCITY & TEMPERATURE ADAPTIVE GRID
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RESULTS FOR Ra = 10°
EvorLuTioN orF DOF's
x104

£=10.001
- - —£=0.005

0 160 260 360 460 560
t
= [N THE EARLY PART OF THE SIMULATION, THE
SOLUTION IS QUITE COMPLICATED AND REQUIRES A

RELATIVELY LARGE NUMBER OF DOFSs.

i AS € IS DECREASED, THE NUMBER OF DOFSs,
N, GENERATED BY ALGORITHM INCREASES
AUTOMATICALLY.



Ra =5 x 10® AT EARLY TIME WITH € = {1073,4 x 1073,4 x 1073}

t = 33.33, N = 42906
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VELOCITY & TEMPERATURE ADAPTIVE GRID
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Ra = 5 x 10® AFTER LONG TIME WITH € = {1072,4 x 1072,4 x 1073}
t = 418.89, N = 9897

1.0

0.6

0.4

t =439.72, N = 9281

1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

VELOCITY & TEMPERATURE ADAPTIVE GRID
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RESULTS FOR Ra = 5 x 108

EvoLuTioN OF DOFS REQUIRED

x 104

€=1{0.001,0.004,0.004}

0
0 100

200

300

t

400

500 600 700

1 [N THE EARLY PART OF SIMULATION, THE SOLUTION
COMPLICATED AND REQUIRES A RELATIVELY LARGE NUMBER OF DOF.

1 THE FLOW EVOLVES TO PRODUCE AN APPROXIMATELY STRATIFIED AND
QUIESCENT REGION IN THE CORE OF THE CAVITY, WITH A REQUIRED
NUMBER OF DOF THAT IS SUBSTANTIALLY SMALLER.

IS

QUITE
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CONCLUSIONS

AN ADAPTIVE WAVELET ALGORITHM FOR SOLVING PDES IN d-
DIMENSIONS HAS BEEN DESCRIBED. THE ALGORITHM IS BASED ON
d-DIMENSIONAL INTERPOLATING WAVELETS.

NUMERICAL RESULTS INDICATE THAT THE ADAPTIVE ALGORITHM
BEHAVES APPROXIMATELY LIKE

|Uezact — usJHV,oo = O(emin(p_Q’n)/p)a N = O(e_d/p)-

THE METHOD HAS BEEN APPLIED TO SOLVE COMPRESSIBLE AND
INCOMPRESSIBLE FLOWS DESCRIBED BY THE NAVIER-STOKES
EQUATIONS IN PRIMITIVE VARIABLES IN 1-D, 2-D, AND 3-D
GEOMETRIES.

SOLUTIONS OBTAINED AGREE WELL WITH ACCURATE BENCHMARK
RESULTS (OBTAINED WITH MUCH LARGER NUMBER OF DOFS)
AVAILABLE IN THE LITERATURE.
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