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Introduction

+ Solutions of many physical problems, formulated as PDEs, may
contain sharp local variations in space, whose location may vary
with time, in otherwise smooth solutions.

+ Since high resolution is needed to resolve such features, accurate
numerical simulations using uniform grids require a large number of
degrees of freedoms (DOFs).

+ The number of DOFs for a uniform grid discretization is O(Nd) for
problems in d spatial dimensions.

+ To reduce the DOFs required, while maintaining solution accuracy,
adaptive discretization becomes necessary.

+ Such task may be accomplished by use of AMR or adaptive FEM,
where the refinement is based upon some error estimators/indicators.

+ Alternatively, we tackle such task by using an adaptive wavelet
method. The method makes use of a wavelet multiscale basis in
the design of the refinement strategy.
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Wavelet Approximation in Domain [0, 1]d

Approximation of u(x) by the interpolating wavelet, a multiscale basis,
on [0, 1]d is given by

u(x) ≈ uJ(x) =
∑

k

uJ0,kΦJ0,k(x) +
J−1∑
j=J0

∑
λ

dj,λΨj,λ(x),

where (x,k) ∈ Rd, λ = (e,k), and Ψj,λ(x) ≡ Ψe
j,k(x).

• Scaling function:
Φj,k(x) =

d∏
i=1

φj,k(xi), ki ∈ κ0
j ,

• Wavelet function:
Ψe
j,k(x) =

d∏
i=1

ψeij,k(xi), ki ∈ κeij ,

where e ∈ {0, 1}d \ 0, ψ0
j,k(x) ≡ φj,k(x) and ψ1

j,k(x) ≡ ψj,k(x), and κ0
j =

{0, . . . , 2j} and κ1
j = {0, . . . , 2j − 1}.
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1-D Interpolating Scaling Function and Wavelet

Some properties of φj,k and ψj,k of order p (p ∈ N, even):

+ φj,k is defined through φ(2jx−k) where φ(x) =
∫
ϕp(y)ϕp(y−x)dy,

the auto-correlation of the Daubechies scaling function ϕp(x).

+ The support of φj,k is compact, i.e. supp{φj,k} ∼ |O(2−j)|.

+ φj,k(xj,n = n2−j) = δk,n, i.e. satisfies the interpolation property.

+ ψj,k = φj+1,2k+1.

+ span{φj,k} = span{{φj−1,k}, {ψj−1,k}}.

+ {1, x, · · · , xp−1}, for x ∈ [0, 1], can be written as a linear combination
of {φj,k, k = 0, · · · , 2j}.

+ {{φJ0,k}, {ψj,k}∞j=J0
} forms a basis of a continuous 1-D function on

the unit interval [0, 1].

4



Wavelet Amplitudes
• Wavelet amplitude, |dj,λ|, measures the approximation error of f(x)
by a local polynomial approximation at the point xj,λ.

• In other words, wavelet amplitudes, dj,λ, indicate the local regularity
of a function.

Example: Consider u(x, y) =

0.2/(|0.4− x2 − y2|+ 0.2)

AFWT (u)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

{ x
j,λ

 : |d
j,λ

| ≥ ε }

0

0.5

1

0

0.5

1
2

4

6

8

10

12

xy

le
v

e
l

Grid points correspond to wavelet amplitudes that
are larger than ε = 5× 10−3.
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Sparse Wavelet Representation (SWR) and

Irregular Sparse Grid

+ For a given threshold parameter ε, the multiscale approximation of
a function u(x) can be written as

u
J
(x) =

X
k

uJ0,kΦJ0,k(x) +

J−1X
j=J0

X
{λ : |dj,λ|≥ε}

dj,λΨj,λ(x)

+

J−1X
j=J0

X
{λ : |dj,λ|<ε}

dj,λΨj,λ(x)

| {z }
RJε

.

+ The Sparse Wavelet Representation (SWR) is obtained by discarding
the term RJε :

uJε (x) =
∑

k

uJ0,kΦJ0,k(x) +
J−1∑
j=J0

∑
{λ : |dj,λ|≥ε}

dj,λΨj,λ(x).
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SWR and Irregular Sparse Grid (continued)

+ In the context of interpolating wavelets, each basis function is associated
with one dyadic grid point, i.e.

Φj,k(x) with xj,k = (k12−j, . . . , kd2−j),

Ψj,λ(x) with xj,λ = xj+1,2k+e.

+ Thus, for a given SWR, one can establish an associated grid of irregular
points

V = {xJ0,k,∪j≥J0xj,λ : λ ∈ Λj}, Λj = {λ : |dj,λ| ≥ ε}.

+ Due to the interpolation property of the basis, there exists a fast wavelet
transform (AFWT), with O(N) operations, N = dim{V}, that maps
function values on the irregular grid V to associated wavelet coefficients
and vice-versa:

AFWT({u(x) : x ∈ V})→ D = {{uJ0,k}, {dj,λ, λ ∈ Λj}}.
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SWR and Irregular Sparse grid (continued)

+ Provided that the function u(x) is continuous, the error in the SWR
uJε (x) is bounded by

‖u− uJε ‖∞ ≤ C1 ε.

+ Furthermore, for a function that is sufficiently smooth, the number
of basis functions N = dim{uJε } required for a given ε satisfies

N ≤ C2 ε
−d/p,

so that we also have

‖u− uJε ‖∞ ≤ C2 N
−p/d.
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Dynamically Adaptive Algorithm for Solving

Time-dependent PDEs

Numerical algorithm:

∂u

∂t
= F (t, u, ux, uxx, . . .)

=⇒ Am+1um+1 = Fm+1(tm+1, tm−q, um−q, . . .), q = 0, . . . ,m (1)

¬ Solve (1) to obtain the approximate solution um+1 on the irregular
grid Vm by using the solution from the previous time step, um, as
initial condition.

­ Obtain the new sparse grid, Vm+1, based on the thresholding of the
magnitudes of wavelet amplitudes of the new solution, um+1.

® Assign Vm+1 → Vm and um+1−q → um−q, q = 0, . . . ,m and go
back to step ¬.

Note: The initial sparse grid set, V0, is obtained from initial conditions.
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Grid Adaption Strategy

+ In each refinement step, determine the essential grid points, which
are points whose associated wavelet amplitudes are larger than the
threshold parameter ε:

V̂e = {xj,λ : j ≥ J0, λ ∈ Λj, |dj,λ| ≥ ε}.

+ To accommodate the possible advection and sharpening of solution
features, we determine the neighboring grid points:

V̂b =
⋃

{j,λ∈Λ}

Nj,λ,

where Nj,λ is the set of neighboring points to xj,λ.

+ The new sparse grid, V , is then given by

V = {xJ0,k} ∪ V̂e ∪ V̂b.
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Applications to Reactive Compressible

Navier-Stokes Equations

Governing Equations (1-D):

∂ρ

∂t
+

∂

∂x
(ρu) = 0

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + P − τ

)
= 0

∂

∂t

(
ρ

(
e+

u2

2

))
+

∂

∂x

(
ρu

(
e+

u2

2

)
+ u (P − τ) + q

)
= 0

∂

∂t
(ρYi) +

∂

∂x
(ρuYi + ji) = ω̇i
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Applications to Reactive Compressible

Navier-Stokes Equations (continued)
Constitutive Equations:

P = ρ<T
NX
i=1

Yi

Mi

(thermal equation of state)

e =

NX
i=1

Yi

 
h
o
i +

Z T

To

cpi(T̂ )dT̂

!
−
P

ρ
(caloric equation of state)

τ =
4

3
µ
∂u

∂x
(Newtonian gas with Stokes’ assumption)

ji = −ρ
NX
j=1

Dij
∂Yj

∂x
(Fick’s law)

q = −k
∂T

∂x
+

NX
i=1

ji

 
h
o
i +

Z T

To

cpi(T̂ )dT̂

!
(augmented Fourier’s law)

ω̇i =

MX
j=1

ajT
αj exp

„−Ej
<T

«
νijMi

NY
k=1

„
ρYk

Mk

«νkj
(reaction rate)
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Operator Splitting

System of equations:

qt(x, t) + fx(q(x, t)) = r(q(x, t)),

where q =
“
ρ, ρu, ρ

“
e+ u2

2

”
, ρYi

”T
. Note that f models convection and

diffusion, while r models the reaction source terms.

Strang splitting:

+ Inert convection-diffusion integration (AB2):

qt(x, t) = −fx(q(x, t)) = Sc(q(x, t)),

+ Reaction source integration (BD2):

qt(x, t) = r(q(x, t)) = Sr.

+ Time integration:

q(x, t+ ∆t) = Sr(∆t/2)Sc(∆t)Sr(∆t/2)q(x, t).
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Operator Splitting (continued)

The reaction source step

∂

∂t


ρ
ρu

ρ
(
e+ u2

2

)
ρYi

 =


0
0
0
ω


Reduces to

ρ = ρo, u = uo, e = eo,
∂Yi
∂t

=
ω

ρo
.

Note:

+ ω has dependency on ρ, e, and Yi.

+ ODEs for Yi can be solved pointwise.
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Ignition delay problem
Premixed H2-O2-Ar in 2/1/7 molar ratio

9 species: H2, O2, H, O, OH, H2O2, H2O, HO2, Ar

37 reactions:

Table Nine-species, 37-step reaction mechanism for a hydrogen–oxygen–argon mixture [25]
with corrected f H2 from [3], also utilized by Fedkiw et al [16]. Units of aj are in appropriate
combinations of cm, mol, s and K so that ω̇i has units of mol cm− 3 s− 1; units of E j are kJ mol− 1.
Third-body collision efficiencies with M are f H2 = 1.00, f O2 = 0.35 and f H2O = 6.5.

20 H2 + O2 HO2 + H 6.84 × 1013 0.00 243.10
21 HO2 + H H2O + O 3.00 × 1013 0.00 7.20
22 H2O + O HO2 + H 2.67 × 1013 0.00 242.52
23 HO2 + O OH + O2 1.80 × 1013 0.00 − 1.70
24 OH + O2 HO2 + O 2.18 × 1013 0.00 230.61
25 HO2 + OH H2O + O2 6.00 × 1013 0.00 0.00
26 H2O + O2 HO2 + OH 7.31 × 1014 0.00 303.53
27 HO2 + HO2 H2O2 + O2 2.50 × 1011 0.00 − 5.20
28 OH + OH +M H2O2 + M 3.25 × 1022 − 2.00 0.00
29 H2O2 + M OH + OH +M 2.10 × 1024 − 2.00 206.80
30 H2O2 + H H2 + HO2 1.70 × 1012 0.00 15.70
31 H2 + HO2 H2O2 + H 1.15 × 1012 0.00 80.88
32 H2O2 + H H2O + OH 1.00 × 1013 0.00 15.00
33 H2O + OH H2O2 + H 2.67 × 1012 0.00 307.51
34 H2O2 + O OH + HO2 2.80 × 1013 0.00 26.80
35 OH + HO2 H2O2 + O 8.40 × 1012 0.00 84.09
36 H2O2 + OH H2O + HO2 5.40 × 1012 0.00 4.20
37 H2O + HO2 H2O2 + OH 1.63 × 1013 0.00 132.71

   j Reaction aj βj E j

1 O2 + H OH + O 2.00 × 1014 0.00 70.30
2 OH + O O2 + H 1.46 × 1013 0.00 2.08
3 H2 + O OH + H 5.06 × 104 2.67 26.30
4 OH + H H2 + O 2.24 × 104 2.67 18.40
5 H2 + OH H2O + H 1.00 × 108 1.60 13.80
6 H2O + H H2 + OH 4.45 × 108 1.60 77.13
7 OH + OH H2O + O 1.50 × 109 1.14 0.42
8 H2O + O OH + OH 1.51 × 1010 1.14 71.64
9 H + H +M H2 + M 1.80 × 1018 − 1.00 0.00
10 H2 + M H + H +M 6.99 × 1018 − 1.00 436.08
11 H + OH +M H2O +M 2.20 × 1022 − 2.00 0.00
12 H2O + M H + OH +M 3.80 × 1023 − 2.00 499.41
13 O + O +M O2 + M 2.90 × 1017 − 1.00 0.00
14 O2 + M O + O +M 6.81 × 1018 − 1.00 496.41
15 H + O2 + M HO2 + M 2.30 × 1018 − 0.80 0.00
16 HO2 + M H + O2 + M 3.26 × 1018 − 0.80 195.88
17 HO2 + H OH + OH 1.50 × 1014 0.00 4.20
18 OH + OH HO2 + H 1.33 × 1013 0.00 168.30
19 HO2 + H H2 + O2 2.50 × 1013 0.00 2.90

   j Reaction aj βj E j
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t = 230 µs
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t = 180, 190, 200, 230 µs
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Large and small scale structures at t = 230 µs
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Instantaneous distribution of collocation points

Used at most 300 points and 15 scale levels

t = 180 µs two-shocks and at t = 230 µs one-shock (detonation).
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Applications to Incompressible Navier-Stokes

Equations

Governing Equations:

∇ · u = 0,
∂u
∂t

+ u · ∇u = −∇p+
1
Re
∇2u− Gr

Re2
T n,

∂T

∂t
+ u · ∇T =

1
RePr

∇2T,

with appropriate boundary and initial conditions.

+ n is the unit vector in the direction of gravity.

+ Re = UL/ν, Gr = gβ∆TL3/ν2, and Pr = ν/α.

Note: L, U , L/U , and ∆T are reference length, velocity,
time, and temperature scales, and T = (T ∗ − Tr)/∆T .
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2nd order Fractional Step Method

+ Step ¬. Compute the temperature field:

Tm+1 − Tm

∆t
+

1

2
(eu · ∇)(T

m+1
+ T

m
) =

1

2RePr
∇2

(T
m+1

+ T
m

),

where eu = (1+r)um−rum−1 with r =
∆τ

∆t
, ∆t = tm+1−tm, ∆τ = tm−tm−1.

+ Step ­. Solve for the intermediate velocity û:

bu− um

∆t
+

1

2
(eu · ∇bu + um) · ∇um = −∇p̃+

1

2Re
∇2

(bu + um)−
Grn
2Re2

(T
m+1

+ T
m

).

+ Step ®. Determine the true velocity um+1:

um+1 − bu = −∆t ∇φ,

∇ · um+1 = 0,

9=; =⇒ ∇2φ = (∇ · bu)/∆t.

+ Step ¯. When needed, compute the pressure field:

p
m+1

= ep+ φ− 1/2
q
Ra/Pr ∆t∇2

φ.
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2-D Differentially Heated Cavity

-

6

x L

y

H

u = v = 0, ∂T
∂y = 0

u = v = 0, ∂T
∂y = 0

u = 0

v = 0

T = Th

u = 0

v = 0

T = Tc
Ω

• ∆T ≡ Th − Tc and Tr ≡ (Th + Tc)/2,
Th > Tc.

• H, U =
√
βg∆TH, ∆T , and

H/U are used as reference
length, velocity, temperature,
and time scales.

• Re2 = Gr = Ra/Pr, where
the Rayleigh number Ra =
βg∆TH3/ν2.

• For a square cavity, H = L, Ω = (0, 1)2 and BCs are given
by

u = 0, on x = 0, 1 and y = 0, 1,

T =
1
2
− x, on x = 0, 1 and

∂T

∂y
= 0 on y = 0, 1.
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Numerical Simulations

+ The adaptive wavelet method is applied to compute the flow
of air (Pr = 0.71) in a square cavity for Ra = 106 to 5× 108.

+ In each case, the initial condition is chosen to be that of
the pure conducting quiescent state (i.e. T (x, 0) = 1/2−x and
u(x, 0) = 0).

+ The steady state, if it exists, is reached through unsteady
integration in time satisfying

‖fm+1 − fm‖Vm,∞

‖fm+1‖Vm,∞
≤ 5× 10−5,

where f = {u, T}.

Parameters of the adaptive method:

Interpolating wavelet : p = 6 with n = 4.
Resolution : J0 = 3, J − J0 = 6.
Threshold : ε = 10−3 and 5× 10−3. 23



Results for Ra = 108

Steady state solution for ε = 10−3, N = 8791
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Results for Ra = 108

Evolution of DOFs
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+ In the early part of the simulation, the
solution is quite complicated and requires a
relatively large number of DOFs.

+ As ε is decreased, the number of DOFs,
N , generated by algorithm increases
automatically.
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Ra = 5× 108 at early time with ε = {10−3, 4× 10−3, 4× 10−3}
t = 33.33, N = 42906
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Ra = 5× 108 after long time with ε = {10−3, 4× 10−3, 4× 10−3}
t = 418.89, N = 9897
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

Velocity & Temperature Adaptive Grid

27



Results for Ra = 5× 108

Evolution of DOFs required
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+ In the early part of simulation, the solution is quite

complicated and requires a relatively large number of DOF.

+ The flow evolves to produce an approximately stratified and

quiescent region in the core of the cavity, with a required

number of DOF that is substantially smaller.
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Conclusions

+ An adaptive wavelet algorithm for solving PDEs in d-
dimensions has been described. The algorithm is based on
d-dimensional interpolating wavelets.

+ Numerical results indicate that the adaptive algorithm
behaves approximately like

‖uexact − uJε ‖V,∞ = O(εmin(p−2,n)/p), N = O(ε−d/p).

+ The method has been applied to solve compressible and
incompressible flows described by the Navier-Stokes
equations in primitive variables in 1-D, 2-D, and 3-D
geometries.

+ Solutions obtained agree well with accurate benchmark
results (obtained with much larger number of DOFs)
available in the literature.
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