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Abstract
Diffusion effects on the Slow Invariant Manifold (SIM) of a closed reactive system are examined with the goal
of developing a model reduction technique which rigorously accounts for the coupling of reaction and diffusion
processes. A robust method of constructing a one-dimensional SIM by calculating equilibria and then integrating
heteroclinic orbits is extended to systems with diffusion across a small characteristic length. First, a spatially
homogeneous system of NO production is discussed. Diffusion is then added as a correction to the spatially
homogeneous system using a Galerkin method to project the infinite dimensional dynamical system onto a low
dimensional approximate inertial manifold. A critical length is identified, above which a perturbed SIM is found
by similar techniques of calculating equilibria and integrating heteroclinic orbits.

Introduction
Reactive flow problems are known to display multi-

scale phenomena that cause challenges in the numeri-
cal simulations of such problems. Verification of these
simulations requires grid resolution that captures the
full range of scales in both space and time. Large dis-
parity in scales induces simulations that require sig-
nificant computational effort. A disparity in temporal
scales can be caused by the reaction mechanism alone,
while the addition of diffusion couples the differing re-
action time scales to a disparity in length scales. Re-
cently, considerable effort has been expended in iden-
tification of model reduction techniques for reactive
flows in order to reduce the computational cost, while
maintaining as much consistency with the underlying
reactive flow physics as possible.

The reviews of Griffiths [1] or Lu and Law [2] are
good references for these techniques in general. Most
of the methods described therein address only reaction
mechanisms. Some current research that extends these
methods to systems with diffusion are Singh, et al. [3],
Ren and Pope [4], Davis [5, 6], Bykov and Maas [7],
Lam [8], Adrover, et al. [9], and Goussis, et al. [10]

The study of Davis and Skodje [11] is particularly
relevant. In their study, which was performed on
spatially homogeneous reactive systems, the authors
calculate a one-dimensional Slow Invariant Manifold
(SIM) of the system by integrating a heteroclinic or-
bit between the system’s physical and non-physical
equilibrium points. This technique has recently been
refined by Al-Khateeb et al. [12] to examine larger
systems. The SIM is a unique trajectory of the dy-
namical system that describes the long time dynamics
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of the system’s evolution efficiently, which makes the
SIM one of the premiere reduction techniques avail-
able; however, the SIM has almost exclusively been
used for spatially homogenous systems.

Specific Objectives
The objective of this paper is to examine how the

addition of diffusion to a reactive system affects the
SIM. Here, we focus on short length scales; in the limit
of an infinitesimal length, diffusion will have a negli-
gible effect, and the system will remain spatially ho-
mogeneous. We aim to identify a critical length scale
at which diffusion has a significant effect on the spa-
tially homogeneous system. We find that at this criti-
cal length a bifurcation occurs in the SIM. This criti-
cal length can serve as a rough division between what
Goussis et al. [10] refer to as ‘local’ or ‘global’ analy-
sis. The objective of the current paper will be to focus
on the global analysis, where the time scales from dif-
fusion modification are faster than the reaction time
scales.

Methodology
By the addition of a linear Fick’s law diffusion

model to a spatially homogeneous reaction mechanism,
the governing equations change from ordinary differ-
ential equations (ODEs),

dz

dt
= f(z), (1)

to partial differential equations (PDEs),

∂z

∂t
= f(z) + D

∂2
z

∂x2
. (2)



Reaction a β E
N + NO ⇌ N2 + O 2.107 × 1013 0.00 0.0
N + O2 ⇌ NO + O 5.839 × 109 1.01 6196

Table 1: The Zel’dovich mechanism for NO produc-
tion. The units for a are mol/(cm s K), E are cal/mol,
and β is dimensionless.

The term z ∈ R
R represents a vector of length R,

whose ith term gives the number of moles per unit
mixture mass of species i, and the function f ∈ R

R

represents a vector of length R, whose ith term gives
the reaction source term for species i, and D is the as-
sumed constant diffusion coefficient. For our analysis
the boundary conditions are chosen as ∂z/∂x|x=0 =
∂z/∂x|x=L = 0. Attention is restricted to a domain
x ∈ [0, L], t ∈ [0,∞), where we choose L as a small
length parameter.

We apply a Galerkin projection to this system, pro-
jecting it onto an approximate inertial manifold [13].
To accomplish this we assume a spectral decomposi-
tion of z

z = zi =
∞
∑

m=0

zi,m(t)φm(x), i = 1, . . . , R, (3)

where zi,m(t) is the mth time-dependent amplitude
associated with species i, and φm(x) are the corre-
sponding basis functions. The ideal choice for φm are
the eigenfunctions of the diffusion operator that match
the boundary conditions; for our choice of boundary
conditions, the complete basis is

φn = cos
(nπ

L
x
)

, n = 0, 1, . . . ,∞, (4)

which has corresponding eigenvalues µn = (nπ/L)2.
Because the Fick’s law diffusion operator is self-
adjoint, our basis functions are orthogonal, and their
eigenvalues are real. We then substitute Eq. (3) into
Eq. (2), and take the inner product with each basis
function, φn, yielding the infinite system of ODEs

dzi,n

dt
=

<φn, f(
∑

∞

m=0
zi,mφm)>

<φn, φn>
− µnDzi,n. (5)

When we truncate this system at a specific n = N , this
method projects the infinite dimensional PDE onto a
finite dimensional approximate inertial manifold. On
this approximate inertial manifold, the standard tech-
nique of connecting heteroclinic orbits to find the SIM
[11, 12] is applied. Importantly, the heteroclinic or-
bit originates along the unstable eigenvector of a sad-
dle point equilibrium that has one positive eigenvalue

A1 6.4 × 10−2 B1 −4.2 × 104 C1 9.1 × 106

D1 −3.1 × 1012 E1 5.5 × 1011

A2 6.4 × 10−2 B2 3.8 × 104 C2 −9.1 × 106

D2 −2.0 × 1012 E2 −5.5 × 1011

Table 2: Coefficients for Eqs. (6-8); the units of Ai are
mol/(g s), Bi and Ci are 1/s, Di and Ei are g/(mol s).

and connects to the physical equilibrium sink along its
slowest eigenvector.

For the present analysis, we choose to truncate
this series at N = 1. To maintain full resolution of
the spatio-temporal dynamics for this choice of N , we
must restrict our domain length to sufficiently small L.
Furthermore, the N = 1 case is adequate since a choice
of a larger value of N does not inherently change the
results and N = 1 allows concise illustration of our
conclusions.

Zel’dovich Model
We evaluate the Zel’dovich mechanism of NO pro-

duction similar to the system studied in [12]; it is
shown in Table 1. This system is taken to be isother-
mal and isochoric, at T = 3500 K and V = 103 cm3.
Each of the five species are initialized with 10−3 mol
uniformly in space. The constraints in the mechanism
make this system isobaric and allow the system to be
reduced to only two variables; we choose to evaluate
the specific moles of NO and N as z1 and z2, respec-
tively. The governing equations for this system are two
PDEs

∂zi

∂t
= Ai + Biz1 + Ciz2 + Diz1z2 + Eiz

2

2 + D
∂2zi

∂x2
,

i = 1, 2, (6)

where the coefficients are given in Table 2; the diffusion
coefficient, D = 1.87 × 101 cm2/s, is chosen as an ad

hoc average of species Fick’s law diffusion coefficients
from the CHEMKIN TRANSPORT database [14].

Applying the Galerkin projection to this model and
truncating at N = 1 modifies the governing equations
to a system of four ODEs

dzi,0

dt
= Ai + Biz1,0 + Ciz2,0 + Diz1,0z2,0 +

Di

z1,1z2,1

2
+ Eiz

2

2,0 + Ei

z2

2,1

2
, (7)

dzi,1

dt
= Biz1,1 + Ciz2,1 + Diz1,0z2,1 +

Diz1,1z2,0 + 2Eiz2,0z2,1 −
π2

L2
Dzi,1, (8)

i = 1, 2.
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Figure 1: The spatially homogeneous SIM for the
Zel’dovich mechanism.

In Eq. (7) the evolution zi,0 term remains identical to
the spatially homogeneous system when zi,1 = 0 for
all i. This means that all the spatially homogenous
equilibria remain in the diffusion-modified system.

Results and Discussion
In the limit as L → 0, the zi,1 terms decay to zero

infinitely fast in time, reducing Eqs. (7,8) to the gov-
erning equations for a spatially homogeneous system.
Each of this system’s equilibria has two eigenvalues: λe

1

and, λe
2. These equilibria are classified by their eigen-

values to construct the SIM. Further analysis will focus
on two of this system’s equilibria: the physical equi-
librium, e0, which is a sink, and the equilibrium from
which one branch of the SIM originates, e1, which is
a saddle with one unstable mode. These two equi-
libria are shown in Fig. 1 along with the SIM and a
set of random trajectories showing the SIM’s attrac-
tiveness. The eigenvalues of these two equilibria are
λe0

1
= −7.245 × 104 1/s, λe0

2
= −1.343 × 107 1/s,

λe1
1 = 2.444× 105 1/s, and λe1

2 = −3.977× 106 1/s.
For small finite L, the system is described by

Eqs. (7,8). The equilibria from the spatially homo-
geneous limit also are equilibria of this system; how-
ever, an analysis of their Jacobian will show they now
have four eigenvalues, two identical to the spatially
homogeneous eigenvalues, and two modified by diffu-
sion: λe

1,0 = λe
1, λe

2,0 = λe
2, λe

1,1 = λe
1 − π2D/L2, and

λe
2,1 = λe

2
− π2D/L2. From this analysis we find that

e0 remains a sink, as all of its eigenvalues remain real
and negative, and e1 remains a saddle; however, e1
has either one or two positive eigenvalues depending
on the diffusion-modification term. Upon further in-
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Figure 2: The time scales of the Galerkin projection
of the Zel’dovich mechanism as a function of domain
length.

vestigation of the system, we find a bifurcation in the
slow dynamics of the system at the critical length, Lc,
where e1 switches between one and two positive eigen-
values and, therefore, has a zero eigenvalue. This oc-
curs at

Lc = π
√

D/λe1
1

; (9)

for our parameters we find Lc = 2.745 × 10−2 cm.
To highlight the character of this bifurcation, let us

compare two length scales: L = L1 = 1 × 10−3 cm ≪
Lc, and L = Lc; the eigenvalues associated with these
lengths are shown in Table 3. When L = L1, e1 is a
saddle with one positive eigenvalue, so it remains the
critical point from which the SIM originates. When
L = Lc, e1 is a non-hyperbolic critical point; at this
length it is undergoing a transition from one to two
positive eigenvalues. This transition is part of a bi-
furcation in which two additional equilibria appear for
L > Lc. These additional equilibria each have only
one positive eigenvalue, which have heteroclinic orbits
that connect to the slow eigenvector of e0. This has
ramifications on the SIM and the slow dynamics of
the system. To illustrate this point the local time
scales, τ = 1/λ, are plotted in the neighborhood of

L1 Lc

e0 e1 e0 e1
λ1,0 −7.2 × 104 2.4 × 105 −7.2 × 104 2.4 × 105

λ2,0 −1.3 × 107 −3.9 × 106 −1.3 × 107 −3.9 × 106

λ1,1 −1.8 × 108 −1.8 × 108 −3.2 × 105 0.0
λ2,1 −2.0 × 108 −1.9 × 108 −1.4 × 107 −4.2 × 106

Table 3: Eigenvalues of the two equilibria, e0 and e1,
for the two length scales; the unit of λ are 1/s.
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Figure 3: Evolution of Galerkin Coefficients.

e0 in Fig. 2. Notice that for L ≪ Lc, the diffusion-
modification induces much faster time scales than ei-
ther reaction only time scale. This implies that the
slow dynamics are governed by the reaction only pro-
cesses. When L ≈ Lc this is no longer the case, and
the time scales from diffusion are infringing upon the
time scales from reaction.

The evolution of the Galerkin coefficients for the
L = Lc case with the initial condition zi,m = 1.5 ×
10−9 mol/g is shown in Fig. 3. The decay in zi,1

that occurs approximately the same time as the zi,0

values are equilibrating shows that diffusion and reac-
tion time scales are fully coupled for this length. The
evolution of this N = 1 Galerkin method when recon-
structed in x-t space is shown in Fig. 4

The dependency of diffusion-coupling on the con-
sidered domain length becomes even more evident
when we look at a phase plane analysis of random tra-
jectories for each of the lengths considered, shown in
Fig. 5. In Figs. 5(a,c) each length is shown in the spa-
tially homogeneous projection. The spatially homoge-
nous SIM (red line) remains unchanged, still attracting
the trajectories for each length. This implies that the
slowest dynamics of the system remain unchanged.

The effects from the bifurcation become apparent in
Figs. 5(b,d). In Fig. 5(b) the much faster diffusion time
scales equilibrate quickly so the trajectories proceed to
the z1,0-z2,0 plane, which is a two-dimensional SIM for
this system. Once on that plane, the system follows
the dynamics of the spatially homogeneous system to-
ward, and then along the spatially homogeneous SIM
to the equilibrium. In Fig. 5(d) the slower diffusion
time scale prevents a similar relaxation, now causing
the trajectories to relax to a surface which follows a
curve similar to the spatially homogeneous SIM and
projected in z1,1 direction. This surface represents a
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Figure 4: Evolution of the N = 1 Galerkin projection
in space and time for L = Lc.

two-dimensional SIM, which remains to be precisely
calculated.

Conclusions
For small characteristic lengths, the effects of diffu-

sion on a reactive system are minimal, allowing for a
global analysis of the system, but when lengths are
close to or above a critical length defined by this
method, diffusion plays a major role. For lengths
longer than the critical length, a diffusion-modified
SIM governs the long time dynamics of these systems;
which would suggest that the use of a local analy-
sis would be advantageous. To maintain an accurate
reduction technique, a global spatially homogeneous
method applied to length scales near or above this crit-
ical length requires accounting for diffusion-coupling of
spatial and temporal scales.

This technique also provides a framework for future
research to evaluate how to best account for coupling
of reaction and diffusion processes. It provides a good
basis for examining the amount of this coupling, by
identifying the diffusion-modulation of reaction eigen-
values. The method also has the ability to identify the
slow dynamics of a reaction-diffusion system. When
identified, the slow dynamics provide an ideal basis for
reduction. This technique is easily extended to cap-
ture a larger number of spatial modes, allowing this
method to be applied to globally analyze systems of
longer characteristic lengths.
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Figure 5: Projections of phase space for the Galerkin method of the Zel’dovich mechanism at L = L1 (a,b) and
L = Lc (c,d), with random trajectories that have identical initial conditions when scaled.
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