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Outline

• Part I: Preliminaries

• Part II: Fundamental linear analysis of length scales of reacting flows with

detailed chemistry and multicomponent transport.

• Part III: Direct Numerical Simulation (DNS) of complex flows with a wavelet-

based adaptive algorithm implemented in a massively parallel architecture.



Part I: Preliminaries



Some Semantics

• Verification: Solving the equa-

tions right—a math exercise.

• Validation: Solving the right

equations—a physics exercise.

• DNS: a verified and validated

computation that resolves all

ranges of relevant continuum

physical scales present.
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Hypothesis

DNS of fundamental compressible reactive flow fields (thus, detailed kinetics,

viscous shocks, multi-component diffusion, etc. are represented, verified, and

validated) is on a trajectory toward realization via advances in

• adaptive refinement algorithms, and

• massively parallel architectures.



Corollary I

A variety of modeling compromises, e.g.

• shock-capturing (FCT, PPM, ENO, WENO, etc.),

• implicit chemistry with operator splitting,

• low Mach number approximations,

• turbulence modeling (RANS, k − ǫ, LES, etc.), or

• reduced/simplified kinetics, flamelet models,

need not be invoked when and if this difficult goal of DNS is realized; simple

low order explicit discretizations suffice if spatio-tempo ral grid resolution is

achieved.



Corollary II

Micro-device level DNS is feasible today; macro-device level DNS remains in the

distant future.



Corollary III

A variety of challenging fundamental unsteady multi-dimensional compressible

reacting flows are now becoming amenable to DNS, especially in the weakly

unstable regime; we would do well as a community to direct more of our

efforts towards unfiltered simulations so as to more starkly expose the

richness of unadulterated continuum scale physics.

[Example (only briefly shown today): ordinary WENO shock-capturing applied to

unstable detonations can dramatically corrupt the long time limit cycle behavior;

retention of physical viscosity allows relaxation to a unique dissipative structure in

the unstable regime.]



Part II: Fundamental Linear Analysis of Length Scales



Motivation

• To achieve DNS, the interplay between chemistry and transport needs to be

captured.

• The interplay between reaction and diffusion length and time scales is well

summarized by the classical formula

ℓ ∼
√
D τ.

• Segregation of chemical dynamics from transport dynamics is a prevalent

notion in reduced kinetics combustion modeling.

• But, can one rigorously mathematically verify an NS model without resolving

the small length scale induced by fast reaction? Answer: no.

• Do micro-scales play a role in macro-scale non-linear dynamics? Answer: in

some cases, yes, see Romick, Aslam, & Powers, JFM, 2012.



Illustrative Linear Model Problem

A linear one-species, one-dimensional unsteady model for reaction, advection, and

diffusion:
∂ψ

∂t
+ u

∂ψ

∂x
= D

∂2ψ

∂x2
− aψ,

ψ(0, t) = ψu,
∂ψ

∂x

∣

∣

∣

∣

x=L

= 0, ψ(x, 0) = ψu.

Time scale spectrum

For the spatially homogenous version: ψh(t) = ψu exp (−at) ,

reaction time constant: τ =
1

a
=⇒ ∆t≪ τ.



Length Scale Spectrum

• The steady structure:

ψs(x) = ψu

(

exp(µ1x) − exp(µ2x)

1 − µ1

µ2
exp(L(µ1 − µ2))

+ exp(µ2x)

)

,

µ1 =
u

2D

(

1 +

√

1 +
4aD

u2

)

, µ2 =
u

2D

(

1 −
√

1 +
4aD

u2

)

,

ℓi =

∣

∣

∣

∣

1

µi

∣

∣

∣

∣

.

• For fast reaction (a≫ u2/D):

ℓ1 = ℓ2 =

√

D

a
=

√
Dτ =⇒ ∆x≪

√
Dτ.



Spatio-Temporal Spectrum

ψ(x, t) = Ψ(t)eıikx ⇒ Ψ(t) = C exp

(

−a
(

1 +
ıiku

a
+
Dk2

a

)

t

)

.

• For long length scales: lim
k→0

τ = lim
λ→∞

τ =
1

a
,

• For fine length scales: lim
k→∞

τ = lim
λ→0

τ =
λ2

4π2

1

D
,



















St =

(

2π

λ

√

D

a

)2

.

• Balance between reaction and diffusion at k ≡ 2π
λ

=
√

a
D

= 1/ℓ,
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Laminar Premixed Flames

Adopted Assumptions:

• One-dimensional,

• Low Mach number,

• Neglect thermal diffusion effects and body forces.

Governing Equations:

∂ρ

∂t
+

∂

∂x
(ρu) = 0,

ρ
∂h

∂t
+ ρu

∂h

∂x
+

∂jq

∂x
= 0,

ρ
∂yl

∂t
+ ρu

∂yl

∂x
+

∂jm
l

∂x
= 0, l = 1, . . . , L − 1,

ρ
∂Yi

∂t
+ ρu

∂Yi

∂x
+

∂jm
i

∂x
= ω̇im̄i, i = 1, . . . , N − L.

see Al-Khateeb, Powers, Paolucci, Combustion Theory and Modelling, 2013.



Laminar Premixed Hydrogen–Air Flame

• Standard detailed mechanisma; N = 9 species, L = 3 atomic elements,

and J = 19 reversible reactions,

• stoichiometric hydrogen-air: 2H2 + (O2 + 3.76N2),

• adiabatic and isobaric: Tu = 800K, p = 1 atm,

• calorically imperfect ideal gases mixture,

• neglect Soret effect, Dufour effect, and body forces,

• CHEMKIN and IMSL are employed.

aJ. A. Miller, R. E. Mitchell, M. D. Smooke, and R. J. Kee, Proc. Combust. Ins. 19, p. 181, 1982.



• Unsteady spatially homogeneous reactive system:
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• Steady spatially inhomogeneous reactive system:a

coarsest

finest

= 2.6×10   cm
0

= 2.4×10    cm
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aA. N. Al-Khateeb, J. M. Powers, and S. Paolucci, Comm. Comp. Phys. 8(2): 304, 2010.



Spatio-Temporal Spectrum

• ℓ1 =
√
Dmixτs = 1.1 × 10−1 cm,

• ℓ2 =
√

Dmixτf = 8.0 × 10−4 cm ≈ ℓfinest = 2.4 × 10−4 cm.
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Conclusions: Part I

• Time and length scales are coupled.

• Coarse wavelength modes have time scales dominated by reaction.

• Short wavelength modes have time scales dominated by diffusion.

• Fourier modal analysis reveals a cutoff length scale for which time scales are

dictated by a balance between transport and chemistry.

• Fine scales, temporal and spatial, are essential to resolve reacting systems;

the finest length scale is related to the finest time scale by ℓ ∼
√
Dτ .

• For a p = 1 atm,H2 + air laminar flame, the length scale where fast

reaction balances diffusion is ∼ 2 µm, the necessary scale for a DNS.



Part III: DNS of Complex Inert and Reacting Flows



Dynamically Adaptive Algorithm for Solving
Time-Dependent PDEs

Given the set of PDEs

∂u

∂t
= F (t, u, ux, uxx, . . .),

with initial conditions
u(x, 0) = u0.

❶ Obtain sparse grid, Vm, based on thresholding of magnitudes of
wavelet amplitudes of the approximate solution um.

❷ Integrate in time using an explicit time integrator with error control
to obtain the new solution um+1.

❸ Assign um+1 → um and return to step ❶.

10



Parallelization

➢ Parallel algorithm uses an MPI-
based domain decomposition.

➢ Hilbert space-filling curve used
for partitioning and load-
balancing.

➢ Strong scaling up to 256 cores
with > 90% parallel efficiency.

➢ Chemkin-II and Transport
Libraries used for evaluation
of thermodynamics, transport
properties, and reaction source
terms.
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Effect of Diffusion on Long-Time Detonation Dynamics

4

6

8

10

 P
m

a
x

(M
P

a
)
26 27 28 29 30 31 32

E

4

6

8

10

 P
m

a
x

(M
P

a
)

26 27 28
E

inviscid viscous

• Standard 1D problem with one-step kinetics, see Powers, et al., 2006.

• Small physical diffusion significantly delays transition to instability.

• In the unstable regime, small diffusion has a large role in determining role for

the long time dynamics; Romick, Aslam, Powers, JFM, 2012.



Model: Reactive Navier-Stokes (NS) Equations

• Unsteady, compressible, one-dimensional

• Detailed mass action kinetics with Arrhenius temperature-dependency

• Ideal mixture of calorically imperfect ideal gases

• Physical viscosity and thermal conductivity

• Multicomponent mass diffusion with Soret and DuFour effects

Case Examined

• Initially quiescent stoichiometric mixture of 2H2 + O2 + 3.76N2 at 1 atm

and 293.15 K accelerated using a piston

• Form of piston velocity was chosen to force a detonation to form ∼ 1 µs
up = upi

(1 + tanh [a (t − ta)]) − (upi
− upf

)
`

1 + tanh
ˆ

b
`

t − tb
´˜´

,

upi
= 1650 m/s, a = 10

8
1/s, b = 10

7
1/s, ta = 10

−7
s, tb = 10

−6
s.

• Final piston velocities 1200 m/s < upf < 1500 m/s were examined



Validation: Lehr’s High Frequency Instability

(Astro. Acta, 1972)

• Shock-induced combustion experi-

ment (Astro. Acta, 1972)

• Stoichiometric mixture of 2H2 +

O2 + 3.76N2 at 0.421 atm

• Observed 1.04 MHz frequency

for projectile velocity corresponding

to f ≈ 1.1

• For f = 1.1, the predicted fre-

quency of 0.97 MHz agrees with

observed frequency and the predic-

tion by Yungster and Radhakrishan

of 1.06 MHz



Stable Detonation
upf = 1500 m/s

0

10

20

30

40

50

60

70

D
e

to
n

a
ti
o

n
 P

re
s
s
u

re
 (

a
tm

)

 0  50  100

t (µs)

0

10

20

30

40

50

60

70

 0  4  6 2

Inviscid
Viscous

The viscous case smooths the initialization; due to this slightly weaker shock, it takes longer to

ignite the detonation. This delay increases the von Neumann spike. Additionally, the viscosity

causes the detonation to take longer to relax to steady state.



Unstable Detonation
upf = 1420 m/s
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The addition of physical viscosity delays the onset of the initial appearance of instability. The

small variations present in the viscous case are due to the detonation traversing a non-uniform

grid and will be reduced as the tolerance of the WAMR is reduced.



Bifurcation Plot - Viscous
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Harmonic Analysis - PSD

• Harmonic analysis can be used to extract the multiple frequencies of a signal

• The discrete one-sided mean-squared amplitude Power Spectral Density (PSD)

for the pressure was used

Φd(0) =
1

N2
|Po|

2,

Φd(f̄k) =
2

N2
|Pk|

2, k = 1, 2, . . . , (N/2 − 1),

Φd(N/2) =
1

N2
|PN/2|

2,

where Pk is the standard discrete Fourier Transform of p,

Pk =

N−1
X

n=0

pn exp

„

−
2πınk

N

«

, k = 0, 1, 2, . . . , N/2.



Inviscid vs. Viscous - Frequency Domain
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The inviscid case under goes a transition to instability before the viscous case; it also enters the

dual mode oscillations before the viscous case. At the lower piston velocities the inviscid case

appears to be chaotic sooner.



Overview of the Frequency Domain - Viscous
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2-D Viscous Detonation

Initial Conditions:

Domain: [0, 60]× [0, 6] cm
Front: x = 15.0 cm
Unreacted pocket:

[1.05× 1.43] cm
at x = 14.7 cm
P = 4.7× 105 dyne/cm2

T = 2100 K
128 cores
391 hrs runtime

2H2 : O2 : 7Ar mixture
9 species, 37 reactions

Wavelet parameters:
� = 1× 10−3

p = 6, n = 5
[Nx ×Ny]j0 = [600× 60]
J − j0 = 10

12



2-D Viscous Detonation (cont.)

100 µs 120 µs 140 µs 160 µs

13



2-D Viscous Detonation (cont.)

240 µs 250 µs 260 µs 270 µs

14



Inert Viscous Cylindrical Implosion

• 100 µm× 100 µm square domain,

• Pure argon,

• Initial uniform temperature, T = 300K ,

• Initial pressure ratio is 4 atm : 0.2 atm between argon on either side of an

octagonal diaphragm,

• Tmax(r = 0, t ∼ 40 ns) ∼ 2400K .



Conclusions

• Verified and validated 2D calculations for realistic reacting gas mixtures with

detailed kinetics and multicomponent transport are realizable with modern

adaptive algorithms working within a massively parallel computing architecture.

• It is possible for 2D calculations to span over five orders of magnitude: from

near mean-free path scales (10−4 cm) to small scale device scales (10 cm).

• Micro-scale viscous shock dynamics can dramatically influence oscillatory

detonation dynamics on the macro-scale (see Romick, et al., 2012).

• Validation against unsteady calculations awaits 3D extensions.

• Realization of verified and validated DNS would remove the need for common,

but problematic, modeling assumptions (shock-capturing, turbulence model-

ing, implicit chemistry with operator splitting, reduced kinetics/flamelets).

• Such 3D V&V could be viable in an exascale environment; however, routine

desktop DNS calculations remain difficult to envision at macro-device scales.




