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Outline

• Motivation for Intrinsic Low Dimensional Manifold (ILDM) tech-
nique (Maas & Pope, 1992) for spatially homogeneous systems

(ODEs, no convection-diffusion)

• Compressible Reactive Navier-Stokes equations

• Details of ILDM implementation in operator splitting method

• Wavelet Adaptive Multilevel Representation (WAMR) technique
(Paolucci & Vasilyev) for spatial discretization

• Results for one-dimensional viscous H2/O2/Ar detonation with
detailed kinetics (Singh, Rastigejev, Paolucci, and Powers, Com-

bustion Theory and Modeling, submitted 2001) using operator

splitting for convection-diffusion

• Work in progress: systematic, center manifold-motivated correc-
tion for convection-diffusion using ILDMs

• Conclusions



Some Important Questions

• Do we have resolved, accurate solutions for systems with detailed
kinetics?

• How can ILDM improve the calculation of systems with detailed
kinetics?

• How can ILDM, derived for spatially homogeneous systems, be
used rationally in systems in which convection and diffusion are

important?



Motivation for ILDM

• Detailed finite rate kinetics critical in reactive fluid mechanics

• Common detailed kinetic models are computationally expensive.

• Expense increases with

– number of species and reactions modeled (linear effect),

– stiffness–ratio of slow to fast time scales, (geometric effect).

• chemical time scales typically more demanding than convection-
diffusion

• Reduced kinetics necessary given current computational resources.



Intrinsic Low-Dimensional Manifold Method (ILDM)

• Uses a dynamical systems approach,

• Most appropriate for spatially homogeneous systems (ODEs)

• Does not require imposition of ad hoc partial equilibrium or
steady state assumptions,

• Fast time scale phenomena are systematically equilibrated,

• Slow time scale phenomena are resolved in time,

• Computation time reduced by factor of ∼ 3 for non-trivial com-
bustion problem considered here; manifold gives much better

roadmap to find solution relative to general implicit solution tech-

niques (Singh, et al. 2001)

• Speed up factor depends on

– initial conditions,

– stiffness ratio

– dimension of ILDM



Simplest Example

dx

dt
= −10x, x(0) = xo,

dy

dt
= −y, y(0) = yo.

• Stable equilibrium at (x, y) = (0,0); stiffness ratio = 10.

• ILDM is x = 0
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• Parameterization of manifold: x(s) = 0; y(s) = s.
dy

dt
=
dy

ds

ds

dt
, chain rule

−y(s) = dy
ds

ds

dt
, substitute from ODE and manifold

−s = (1)ds
dt
, no longer stiff!

s = soe
−t,

x(t) = 0; y(t) = soe
−t.

• Projection onto manifold for so, induces small phase error.



Compressible Reactive Navier-Stokes Equations

∂ρ

∂t
+
∂

∂x
(ρu) = 0, mass

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p− τ) = 0, momentum

∂

∂t

(
ρ

(
e+
u2

2

))
+
∂

∂x

(
ρu

(
e+
u2

2

)
+ u (p− τ) + q

)
= 0, energy

∂

∂t
(ρyl) +

∂

∂x
(ρuyl + jl) = 0, (l = 1, . . . , L− 1) , elements

∂

∂t
(ρYi) +

∂

∂x
(ρuYi + J

m
i ) = ω̇iMi, (i = 1, . . . , N − L) , species

τ =
4

3
µ
∂u

∂x
, Newtonian gas with Stokes’ assumption

Jq = −k ∂T
∂x
+

N∑
i=1

Jmi

(
hoi +

∫ T
To

cpi(T̂ )dT̂

)
−<T

N∑
i=1

DTi
Mi

(
1

χi

∂χi

∂x
+

(
1− Mi
M

)
1

p

∂p

∂x

)
, Fourier’s law

Jmi = ρ

N∑
j=1,j 6=i

Mi

M
YjDij

(
1

χj

∂χj

∂x
+

(
1− Mj
M

)
1

p

∂p

∂x

)
−DTi

1

T

∂T

∂x
, (i = 1, . . . , N) , Fick’s law

yl = ml

N∑
i=1

φil

Mi
Yi, (l = 1, . . . , L− 1) , element mass fraction

M =

N∑
i=1

Miχi, mean molecular mass

χi =
M

Mi
Yi, (i = 1, . . . , N), mole fraction

jl = ml

N∑
i=1

φil

Mi
Ji, (l = 1, . . . , L− 1) , element mass flux

N∑
i=1

Yi = 1, mass fraction constraint

L∑
l=1

yl = 1, element mass fraction constraint

ω̇i =
J∑
j=1

ajT
βj exp

(−Ej
<T

)(
ν′′ij − ν′ij

) N∏
k=1

(
ρYk

Mk

)ν′kj
, (i = 1, . . . , N − L) law of mass action

p = ρ<T
N∑
i=1

Yi

Mi
, thermal equation of state

e =

N∑
i=1

Yi

(
hoi +

∫ T
To

cpi(T̂ )dT̂ − <T
Mi

)
. caloric equation of state

N species, L elements, J reactions

4N + L+ 7 equations in 4N + L+ 7 unknowns



Focus on element conservation

• L−1 element equations formed; N−L species equations, instead
of the typical N − 1 species equations,

• facilitates a proper use of ILDM in upcoming operator splitting,

• In general element mass fractions change due to mass diffusion

ρ
dyl

dt
= −∂jl
∂x
.

• Assuming

– Soret and DuFour effects are negligible, DTi = 0,

– Deviations of molecular mass not large Mi ∼M ,
– Diffusion coefficients are equal, Dij ∼ D,

• Molecular mass diffusion reduces to Jmi = −ρD∂Yi∂x .

• Elemental mass diffusion reduces to jl = −ρD∂yl∂x .

• Evolution equation for element mass fraction becomes

ρ
dyl

dt
= D ∂
∂x


ρ∂yl
∂x


 .

• In uniformly premixed problem with no boundary influences then,
all element concentrations are constant for all time:

dyl

dt
= 0.



Operator Splitting Technique for Convection-Diffusion

• Equations are of form

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = g(q(x, t)), q, f , g ∈ <N+2.

where

q =


ρ, ρu, ρ


e+ u2

2


 , ρyl, ρYi


T .

• f models convection-diffusion

• g models reaction source terms

• Splitting

1. Inert convection-diffusion step:

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = 0,

d

dt
qi(t) = −∆xf(qi(t)).

∆x is any spatial discretization operator, here a wavelet operator.

2. Reaction source term step:

∂

∂t
q(x, t) = g(q(x, t)),

d

dt
qi(t) = g(qi(t)).

• Operator splitting with implicit stiff source solution can induce non-
physical wave speeds! (LeVeque and Yee, JCP 1990)



ILDM Implementation in Operator Splitting

• Form of equations in source term step:

d

dt




ρ

ρu

ρ
(
e + u

2

2

)

ρyl

ρYi




=




0

0

0

0

ω̇iMi




.

l = 1, . . . , L− 1, i = 1, . . . , N − L.

• Equations reduce to

ρ = ρo, u = uo, e = eo, yl = ylo,

dYi

dt
=
ω̇iMi

ρo
, i = 1, . . . , N − L

• ω̇i has dependency on ρ, e, yl, and Yi

• ODEs for Yi are stiff, usually solved with implicit methods.

• ODEs for Yi can be attacked with manifold methods to remove
stiffness with ILDM with ρ, e, yl, . . . , yL−1 parameterization.



Necessary Dimension of ILDM

• Spatial discretization of PDEs results in a set of adiabatic, iso-
choric spatially homogeneous reactors,

• N species with L elements at constant e and ρ gives rise to a
(N − L)-dimensional phase space (same as composition space),

• To resolve M slow time scales, we identify M -dimensional sub-
spaces (manifolds),M < (N−L), embedded within the (N−L)-
dimensional phase space on which the M slow time scale events

evolve,

– Fast time scale events rapidly move to the manifold,

– Slow time scale events move on the manifold,

– Because of convection-diffusion, e, ρ, yl vary, requiring a K =

M + L + 1-dimensional manifold.

– If yl conserved (premixed with no preferential diffusion), di-

mension of manifold is reduced by L− 1.
– e.g., for M = 1 in premixed H2/O2/Ar with no preferen-

tial diffusion, small molecular mass deviation, and negligible

Soret/DuFour diffusion, we need K = 3.



Implementation of ILDMs with convection-diffusion

and operator splitting

• To minimize phase error, must integrate full equations until suf-
ficiently close to ILDM

• When near ILDM, M slow equations are integrated, other vari-
ables found by table lookup

• Convection-diffusion step applied to all variables perturbs sys-
tem from ILDM

• In next reaction step, project to ILDM at different value of ρ, e,
y1, . . . , yN−1.

Projection onto
manifold at a different statePerturbation off the 

manifold due to
convection and
diffusion

ILDM (ρ  , e  , y    ..., y      )1 1

ILDM (ρ  , e  , y     ,..., y      )2 2

Y

Y

A

B

1, 2 L-1,2

1,1 L-1,1



Formulation of General ILDMs

• A spatially homogeneous adiabatic, isochoric chemically reactive
system of N species in L elements is modeled by a set of non-

linear ordinary differential equations:

dx

dt
= F(x), x(0) = xo,

x : species concentration; x ∈ <N−L

• Equilibrium points defined by

x = xeq such that F(xeq) = 0.

• Consider a system near equilibrium (the argument can and must
be extended for systems away from equilibrium) with x̃ = x−xeq.

• Linearization gives
dx̃

dt
= Fx · x̃,

where Fx is a constant Jacobian matrix.

• Schur decompose the Jacobian matrix:

Fx = Q ·U ·QT

Q =



...
...

...

q1 q2 · · · qN−L
...
...

...


 , U =




λ1 u1,2 · · · u1,N−L
0 λ2 · · · u2,N−L
0 · · · . . . ...

0 · · · 0 λN−L


 , Q

T =




· · · qT1 · · ·
· · · qT2 · · ·

...

· · · qTN−L · · ·






Formulation of General Manifolds (cont.)

• Q is an orthogonal matrix with real Schur vectors qi in its columns.

• U is an upper triangular matrix with eigenvalues of Fx on its
diagonal, sometimes placed in order of decreasing magnitude.

• The Schur vectors qi form an orthonormal basis which spans the
phase space, <N−L.

• We then define M slow time scales, M < N − L.

• Next define a non-square matrix W which has in its rows the

Schur vectors associated with the fast time scales:

W =




· · · · · · qTM+1 · · · · · ·
· · · · · · qTM+2 · · · · · ·

...

· · · · · · qTN−L · · · · · ·



.

• Letting the fast time scale events equilibrate defines the manifold:

W · F(x) = 0.



Sample ILDM for H2/O2/Ar

• Based on N = 9, J = 37 mechanism of Maas and Warnatz,

• Projection in YH2O, YH2O2 plane and YH2O, YH2O2, e space

• Adiabatic (e = 8×105 J/kg), isochoric (ρ = 5.0×10−4 kg/m3),
yH = 0.01277, yO = 0.10137, yAr = 0.88586,

• We can get e.g. p (ρ, e, YH2O) , T (ρ, e, YH2O) , YH (ρ, e, YH2O) , . . .

• Linear interpolation used for points not in table,

• Captures ∼ 0.1 µs reaction events.
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Wavelet Adaptive Multilevel Representation (WAMR) Technique

• Summary of standard spatial discretization techniques

– Finite difference-good spatial localization, poor spectral local-

ization, and slow convergence,

– Finite element- good spatial localization, poor spectral local-

ization, and slow convergence,

– Spectral–good spectral localization, poor spatial localization,

but fast convergence.

• Wavelet technique

– See e.g. Vasilyev and Paolucci, “A Fast Adaptive Wavelet Col-

location Algorithm for Multidimensional PDEs,” J. Comp.

Phys., 1997,

– Basis functions have compact support,

– Well-suited for problems with widely disparate spatial scales,

– Good spatial and spectral localization, and fast (spectral) con-

vergence,

– Easy adaptable to steep gradients via adding collocation points,

– Spatial adaptation is automatic and dynamic to achieve pre-

scribed error tolerance.



Ignition Delay in Premixed H2/O2/Ar

• Consider standard problem of Fedkiw, Merriman, and Osher, J.
Comp. Phys., 1996,

• Shock tube with premixed H2, O2, and Ar in 2/1/7 molar ratio,

• Initial inert shock propagating in tube,

• Reaction commences shortly after reflection off end wall,

• Detonation soon develops,

• Model assumptions

– One-dimensional,

– Mass, momentum, and energy diffusion,

– Nine species, thirty-seven reactions,

– Ideal gases with variable specific heats.



Viscous H2 −O2 Ignition Delay with Wavelets and ILDM

• t = 195 µs, 300 collocation points, 15 wavelet scale levels

• ILDM gives nearly identical results as full chemistry

• WAMR spatial discretization, implicit linear trapezoidal convection-
diffusion time stepping, explicit (ILDM)/implicit (non-ILDM) re-

action time stepping

• Viscous shocks, inductions zones, and entropy layers spatially
resolved!
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Viscous H2 −O2 Ignition Delay with Wavelets and ILDM

• t = 195 µs

• ILDM gives nearly identical results as full chemistry
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Viscous H2 − O2 Ignition Delay with Wavelets
Global and Fine Scale Structures

• t = 230 µs, Induction zone length: ∼ 470 µm, Viscous shock
thickness: ∼ 50 µm (should use smaller µ),

• No significant reaction in viscous shock zone.
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Viscous H2 −O2 Ignition Delay with Wavelets,
Instantaneous Distributions of Collocation Points

• t = 180 µs, two-shock structure with consequent collocation
point distribution,

• t = 230 µs, one-shock structure with evolved collocation point
distribution.
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Post Reflection Entropy Layer?: Viscous Wavelet Results

• No significant entropy layer evident on macroscale after shock
reflection when resolved viscous terms considered,

• Inviscid codes with coarse gridding introduce a larger entropy
layer due to numerical diffusion,

• Unless suppressed, unphysically accelerates reaction rate.
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Post Reflection Entropy Layer: Viscous Wavelet Results

• small entropy layer evident on finer scale,

• temperature rise ∼ 5 K; dissipates quickly,

• inviscid calculations before adjustment give persistent tempera-
ture rise of ∼ 20 K; reaction acceleration small.
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Center manifold-motivated correction for small convection-diffusion

• Consider system of Davis and Skodje, 1999, extended for diffusion
∂y1

∂t
= −y1︸ ︷︷ ︸
reaction

+ ε
∂2y1

∂x2︸ ︷︷ ︸
diffusion

,

∂y2

∂t
= −γy2 + (γ − 1)y1 + γy

2
1

(1 + y1)2︸ ︷︷ ︸
reaction

+ ε
∂2y2

∂x2︸ ︷︷ ︸
diffusion

,

y1(x, 0) = x, y1(0, t) = 0, y1(1, t) = 1,

y2(x, 0) = 0.55x y2(0, t) = 0, y2(1, t) = 0.55.

• γ >> 1 for chemical stiffness; ε << 1 for small diffusion

• Maas-Pope ILDM:

y2 =
y1
1 + y1

+
2y21

γ(γ − 1)(1 + y1)3 .

• Purely reactive system has equilibrium point in phase space at
y1 = 0, y2 = 0 at t→∞.

• System with convection-diffusion approaches steady state mani-
fold, not ILDM, as t→∞ given by solution of ODEs:

0 = −y1 + εd
2y1

dx2
; y1(0) = 0; y1(1) = 1,

0 = −γy2 + (γ − 1)y1 + γy
2
1

(1 + y1)2
+ ε
d2y2

dx2
; y2(0) = 0; y2(1) = 0.55.



Center manifold-motivated correction for small convection-diffusion

• Assume convection-diffusion acts as a small perturbation

• Define fast (wf) and slow (ws) variables based on analytic Jaco-
bian of chemical source term:


ws(x, t)

wf (x, t)


 =




1 0

−α(y10(x)) 1


 ·



y1(x, t)− y10(x)
y2(x, t)− h(y10(x))




• y10(x) is solution for y1(x) at previous time step,

• h(y10(x)) is the ILDM.

• Project original PDEs onto the slow and fast basis near ILDM to
get

∂ws

∂t
= −y10(x)− ws + ε


d
2y10

dx2
+
∂2ws

∂x2




︸ ︷︷ ︸
convection−diffusion correction

+H.O.T.,

∂wf

∂t
= Maas-Pope ILDM term︸ ︷︷ ︸

=0

− γwf +

+ ε


g1(y10(x)) + wsg2(y10(x)) + ∂ws

∂x
g3(y10(x)) +

∂2wf

∂x2




︸ ︷︷ ︸
convection−diffusion correction

+H.O.T.



Center manifold-motivated correction for small convection-diffusion

• equilibrate fast variables: ∂wf
∂t
= 0, giving an elliptic equation

0 = − γwf +
+ ε


g1(y10(x)) + wsg2(y10(x)) + ∂ws

∂x
g3(y10(x)) +

∂2wf

∂x2




︸ ︷︷ ︸
convection−diffusion correction

+H.O.T.

• Use method of lines, combined with simultaneous solution of el-
liptic equation, to advance slow variables using large time step,

• Analogous to solving elliptic equation for pressure when time
advancing incompressible Navier-Stokes equations.



Center Manifold-Motivated Correction for Convection-Diffusion

• Long time solution does not approach Maas and Pope ILDM,

• Convection-diffusion correction gives more accurate predictions
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Traditional Maas-Pope ILDM

• H2/O2/Ar ILDM results accurate because restricted to near equi-
librium regions

• arbitrary use of ILDM can give inaccurate results



Center Manifold-Motivated Correction for Convection-Diffusion

• The corrected method gives more accurate predictions of inter-
mediate and long times.
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Conclusions

• The WAMR method gives dramatic spatial resolution in viscous
one-dimensional H2/O2 detonations with detailed kinetics; vis-

cous shocks, entropy layers, and induction zones are resolved,

• ILDM method, coupled appropriate use of full integration, with
operator spitting accurately recovers most results of full chemistry

with decrease (factor of three for our case) in computational time,

• Work needed to better account for projection of initial conditions
onto ILDM,

• Center manifold-motivated correction for convection and diffu-
sion a promising improvement to ILDM method in some (not all)

problems.


