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Motivation

e Manifold methods offer a rational strategy for reducing stiff sys-
tems of detailed chemical kinetics.

e Manifold methods are suited for spatially homogeneous systems

(ODESs), or operator split (PDESs) reactive flows.

e Approximate methods (ILDM, CSP) cannot be used reliably for
arbitrary initial conditions.

e Calculation of the actual Slow Invariant Manifold (SIM) can be
algorithmically easier and computationally more efficient.

e Global phase maps identify information essential to proper use of
manifold methods.

e We will illustrate strategies to obtain the SIM.




Tactics

e Examine different methods for contructing SIMs us-

Ing a simple physical mechanism of reaction kinetics
(Zel'dovich /N O production).

e Employ realistic constitutive models.
e Rigorously determine the mathematical properties.

e Explore physical and non-physical regions of phase
space, which is essential to construct the SIM as well

as understand global dynamics.
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Computational Methods

e dynamical systems (shooting, e.g. Davis-Skodje)
e [LDM/CSP (Maas-Pope/Lam-Goussis)

e iterative methods (Roussel-Fraser/Davis-Skodje/Gorban
Karlin)

e |CE-PIC (Pope-Guckenheimer)

e variational method based on minimum entropy produc-

tion rate (Lebiedz)




Zel’dovich Mechanism for N O Production

- NO = Ny + 0
N+ 0Oy=NO+O0

e spatially homogeneous,

e isothermal and isobaric, 7' = 6000 K, P = 2.5 bar,
e |aw of mass action with reversible Arrhenius kinetics,
e kinetic data from Baulch, et al., 2005,

e thermodynamic data from Sonntag, et al., 2003.




Zel’dovich Mechanism: ODEs




Zel’dovich Mechanism: DAEsS

dINO
dt
d|N]
dt

[NO| + [O] +2|0;] NOJ, + [0, + 2[02], = C1,
[NO| + [N] +2[Ny (NOJ, + [N]o + 2[N2], = Cs,

[NO| + [N] + [N2] + [O2] + O] [NOJo + [N]o + [N,
+ (03], + [0O], = Cs.

Constraints for element and molecule conservation.




Classical Dynamic Systems Form

wino) = 0.72 — 9.4 x 10°[NO] + 2.2 x 107[N]
— 3.2 x 1013[N][NO] + 1.1 x 10"3[N]?,

Wiy = 0.72 + 5.8 x 10°[NO] — 2.3 x 107 [N]

— 1.0 x 10"[N][NO] — 1.1 x 10*3[N]?.

Constants evaluated for 7' = 6000 K, P = 2.5 bar, C; = (5 =
4 x 107% mole/cc, AGS = —2.3 x 10'% erg/mole, AGY =
—2.0x 10" erg/mole. Algebraic constraints absorbed into ODEs.




Species Evolution in Time
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Dynamical Systems Approach to Construct SIM

Finite equilibria and linear stability:

1. ([NOJ, [N]
(A1, A2

)
)
2. ([NOJ, [N])
)
)
)

()\17 2

3. (INOJ, [N]
(A1, A2

(—1.6 x 107°%,—3.1 x 1079),

(5.4 x 105 —1.2 x 107) saddle (unstable)
(=5.2 x 1078, —2.0 x 1079),

(4.4 x 107 £ 8.0 x 10%) spiral source (unstable)
(7.3 x 1077,3.7 x 1079),

(—2.1 x 10%,—3.1 x 107) sink (stable, physical)
stiffness ratio = Ao /A = 14.7

Equilibria at infinity and non-linear stability

sink/saddle (unstable),

source (unstable).




Continuum Time Scales vs. Collision Time Scales

e Continuum theory is an averaged collision theory.

® The finest time scale of our continuum model Is
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Detailed Phase Space Map with All Finite Equilibria
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Projected Phase Space from Poincaré’s Sphere
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Behavior Near Equilibrium at Infinity

e Consider the behavior of the SIM as [NO| — o0

e Calculations suggest @[N] — Oas [NO| — .

° cf)[N] = 0 implies that

lim [N] = 5.8 x 107° mole/cc.
INO|—0o0

e |dentical to that realized in full calculations.




Roussel-Fraser Iterative Scheme to Calculate SIM
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to find [V O],,. Convergence achieved in four/five iterations.




SIM from Roussel-Fraser Iteration
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The variant Davis-Skodje iterative method yields similar results.




Connections of SIM with Thermodynamics

e Classical thermodynamics identifies equilibrium with

the minimum of Gibbs free energy.

e Far from equilibrium, the Gibbs free energy potential

has no value in elucidating the dynamics.

e Non-equilibrium thermodynamics contends far-from-

equilibrium systems relax to minimize the irreversibility

production rate.

e \We demonstrate that this I1s not true for our standard

chemical kinetics.




Physical Dissipation: Irreversibility Production
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The physical dissipation rate is everywhere positive semi-definite.
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expand, can be positive or negative. Here, its field is described by a

plane, and it takes on a value of zero on a line.



Gibbs Free Energy Gradient Magnitude
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Irreversibility Production Rate Gradient Magnitude

[N] (mole/cc)

'VdZ/dt| “valley” coincident with |V G|.




SIM vs. Irreversibility Minimization vs. ILDM
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Lebiedz, 2004, uses this in a variational method.




Conclusions
e Global phase maps are useful in constructing the SIM.
e Global phase maps give guidance in how to project onto the SIM.

e Global phase maps shows when manifold-based reductions should

not be used.

e The SIM does not coincide with either the local minima of

irreversibility production rates or Gibbs free energy, except near a

physical equilbrium.

e While such potentials are valuable near equilibrium, they offer no

guidance for non-equilibriium Kkinetics.




