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Verification and Validation Overview

• We will consider here verification and validation of a multi-scale

problem using Direct Numerical Modeling, which captures both

coarse and fine scales.

• Verification requires fidelity of computational simulation with the

underlying mathematics. One key algorithm is the Wavelet

Adaptive Multiresolution Method (WAMR). It is implemented in a

way that effectively achieves a priori error control, thus

automatically verifying that all relevant spatio-temporal scales

have been captured.

• Validation requires fidelity of computational simulation with

experiment. This is harder and more limited!



Harmony (and multiscale) in music

https://www.youtube.com/watch?v=TNjGNtTT110

Myra Hess playing J. S. Bach’s French Suite No. 5 Gigue.

Harmony and order (and many scales).



Disharmony in High Speed Combustion

https://www.youtube.com/watch?v=rYxsilgRxi4

Prof. Frank Lu, University of Texas-Arlington.

Described as “25 Hz,” but there is acoustic energy present across

the frequency spectrum. Disorder.



Harmony: Organ Pipe Resonance

a/ℓ ∼ 1000 Hz. Higher order harmonic at 2000 Hz. Order.



Motivation

• Combustion dynamics are influenced by various balances of

advection, reaction, and diffusion.

• Depending on flow conditions, one may observe simple

structures, patterned harmonic structures, or chaotic structures.

• Often, the critical balance is between advection and reaction,

with diffusion serving as only a small perturbation.

• Near stability thresholds, diffusion can play a determining role.

• Full non-linear dynamics can induce complex behavior.

• Extreme care may or may not be needed in numerical

simulation to carefully capture the multi-scale physics.



Introduction

• Standard result from non-linear dynamics: small scale

phenomena can influence large scale phenomena and vice

versa.

• What are the risks of using models which ignore diffusion (Euler

vs. Navier-Stokes)?

• Might there be risks in using standard filtering strategies:

implicit time-advancement, numerical viscosity, LES, and

turbulence modeling, all of which introduce nonphysical

diffusion to filter small scale physical dynamics?



Introduction-Continued

• Powers & Paolucci (AIAA J., 2005) studied the reaction length

scales of inviscid H2-O2 detonations and found the finest length

scales on the order of microns and the largest on the order of

centimeters for atmospheric ambient pressure.

• This range of scales must be resolved to capture the dynamics.

• In a one-step kinetic model only a single reaction length scale is

induced compared to the multiple length scales of detailed

kinetics.

• We examine i) a simple one-step model and ii) a detailed model

appropriate for hydrogen.



One-Step Reaction Kinetics Model



One-Dimensional Unsteady Compressible Reactive
Navier-Stokes Equations
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Equations are transformed to a steady moving reference frame.



Constitutive Relations

P = ρRT,

e =
p

ρ (γ − 1)
− qYB ,
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− Ẽ

p/ρ ,

jmB = −ρD
∂YB

∂x
,

τ =
4

3
µ
∂u

∂x
,

j
q
= −k

∂T

∂x
+ ρDq

∂YB

∂x
.

with D = 10−4 m2

s
, k = 10−1 W

mK
, and µ = 10−4 Ns

m2 , so for ρo = 1 kg

m3 ,

Le = Sc = Pr = 1.



Case Examined

Let us examine this one-step kinetic model with:

• a fixed reaction length, L1/2 = 10−6 m, which is similar to that

of the finest H2-O2 scale.

• a fixed diffusion length, Lµ = 10−7 m; mass, momentum, and

energy diffusing at the same rate.

• an ambient pressure, Po = 101325 Pa, ambient density,

ρo = 1 kg/m3, heat release q = 5066250m2/s2, and

γ = 6/5.



Numerical Method

• Finite difference, uniform grid
(

∆x = 2.50× 10−8 m, N = 8001, L = 0.2mm
)

.

• Computation time = 192 hours for 10 µs on an AMD 2.4 GHz

with 512 kB cache.

• A point-wise method of lines aproach was used.

• Advective terms were calculated using a combination of fifth

order WENO and Lax-Friedrichs.

• Sixth order central differences were used for the diffusive terms.

• Temporal integration was accomplished using a third order

Runge-Kutta scheme.



Physical Piston Problem
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• Piston drives wave into ambient mate-

rial.

• Temperature rise at shock induces

downstream combustion.

• Wave driven by heat release and piston.

• Initialized with inviscid ZND solution.

• Moving frame travels at the CJ velocity.

• Integrated in time for long time behavior.



Below a Critical Activation Energy, the Detonation is

Stable
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At Higher Activation Energy, Fundamental Harmonic

Due to Balance Between Reaction and Advection

Between Lead Shock and End of Reaction Zone:

An Organ Pipe Resonance
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Diffusion Delays Transition to Instability
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Viscous Detonations:

• Lee and Stewart revealed for

E < 25.26 the steady ZND

wave is linearly stable.

• For the inviscid case Henrick

et al. found the stability limit at

E0 = 25.265± 0.005.

• In the viscous case E =

26.647 is still stable; how-

ever, above E0 ≈ 27.1404 a

period-1 limit cycle can be re-

alized.



Period-Doubling Phenomena Predicted

0 0.5 1 1.5 2

4

5

6

7

t (μs)

P
 (

M
P

a
)

0 0.5 1 1.5 2

4

5

6

7

t (μs)

P
 (

M
P

a
)

E = 29.6077

E = 30.0025

Viscous Detonations: • As in the inviscid limit, the

viscous case goes through a

period-doubling phase.

• For the inviscid case, the

period-doubling began at

E1 ≈ 27.2.

• In the viscous case, the begin-

ning of this period doubling is

delayed to E1 ≈ 29.3116.



Chaos and Order
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Viscous Detonations:



Diffusion Delays Transition to Chaos

• In the inviscid limit, the point where bifurcation points

accumulate is found to be E∞ ≈ 27.8324.

• For the viscous case, Lµ/L1/2 = 1/10, the accumulation

point is delayed until E∞ ≈ 30.0411.

• For E > 30.0411, a region exists with many relative maxima

in the detonation pressure; it is likely the system is in the chaotic

regime.



Approximations to Feigenbaum’s Constant

δ∞ = lim
n→∞

δn = lim
n→∞

En −En−1

En+1 −En

Feigenbaum predicted δ∞ ≈ 4.669201.

Inviscid Inviscid Viscous Viscous

n En δn En δn

0 25.2650 - 27.1404 -

1 27.1875 3.86 29.3116 3.793

2 27.6850 4.26 29.8840 4.639

3 27.8017 4.66 30.0074 4.657

4 27.82675 - 30.0339 -



Similar Behavior to Logistics Map:

xn+1 = rxn(1− xn)

• The period-doubling behavior and transition to chaos predicted

in both the viscous and inviscid limit have striking similarilities to

that of the logistic map.

• Within the chaotic region, there exist pockets of order.

• Periods of 5, 6, and 3 are found within this region.



Diffusion Delays Instability: Bifurcation Diagram
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Diminishing Diffusion De-Stabiliizes (E = 27.6339)
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• The system undergoes

transition from a stable

detonation to a period-1

limit cycle, to a period-2

limit cycle.

• The amplitude of pulsa-

tions increases.

• The frequency de-

creases.



Harmonic Analysis - PSD

• Harmonic analysis can be used to extract the multiple frequencies of a signal

• The discrete one-sided mean-squared amplitude Power Spectral Density (PSD)

for the pressure was used

Φd(0) =
1

N2
|Po|

2,

Φd(f̄k) =
2

N2
|Pk|

2, k = 1, 2, . . . , (N/2− 1),

Φd(N/2) =
1

N2
|PN/2|

2,

where Pk is the standard discrete Fourier Transform of p,

Pk =

N−1
∑

n=0

pn exp

(

−
2πınk

N

)

, k = 0, 1, 2, . . . , N/2.



Higher Order Harmonics Predicted as Activation

Energy Increases
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Diffusion Modulates the Amplitude and Shifts the
Frequency
Ea = 27.7

 0.2 0.1 0

f  

 -20

 -10

 0

 -30

 Φ
d
 (

 f
  
) 

  
[d

B
] 

f
f

2

2 f
f

f
f

2

3
f
f

f
f

4

Inviscid

Viscous



Bifurcation of Oscillatory Modes: Baroque

Harmonies!



Simple One-Step Model: Conclusions

• Dynamics of one-dimensional detonations are influenced by

mass, momentum, energy diffusion, especially so in the region

of high frequency instability.

• In general, the effect of diffusion is stabilizing.

• Bifurcation and transition to chaos show similarities to the

logistic map.

• The structures are deterministic and often harmonious, but with

possible baroque complexity.



Detailed Reaction Kinetics Model



Unsteady, Compressible, Reactive Navier-Stokes
Equations
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+ ∇ · (ρu) = 0,

∂

∂t
(ρu) + ∇ · (ρuu + pI − τ) = 0,

∂

∂t

(

ρ

(

e +
u · u

2

))

+ ∇ ·

(

ρu

(

e +
u · u

2

)

+ (pI − τ) · u + q

)

= 0,

∂

∂t

(
ρYi

)
+ ∇ ·

(
ρuYi + ji

)
= Miω̇i,

p = RT
N∑

i=1

Yi

Mi

, e = e
(
T, Yi

)
, ω̇i = ω̇i

(
T, Yi

)
,

ji = ρ
N∑

k=1
k 6=i

MiDikYk

M

(
∇yk

yk

+

(

1 −
Mk

M

)
∇p

p

)

−
DT

i ∇T

T
,

τ = µ

(

∇u + (∇u)
T

−
2

3
(∇ · u) I

)

,

q = −k∇T +
N∑

i=1

jihi − RT
N∑

i=1

DT
i

Mi

(
∇yi

yi

+

(

1 −
Mi

M

)
∇p

p

)

.



Computational Methods

• Inviscid

– Shock-fitting : Fifth order algorithm adapted from Henrick et al., JCP.

– Shock-capturing : Second order min-mod algorithm

• Viscous

– Wavelet method (WAMR), developed by Vasilyev and Paolucci, JCP

– User-defined threshold parameter ǫ controls error: automatic verification!

u
J
(x) =

∑

k

u0,kΦ0,k(x) +

J−1
∑

j=0

∑

{λ:|dj,λ|≥ǫ}

dj,λΨj (x)

︸ ︷︷ ︸

uJ
ǫ

+

J−1
∑

j=0

∑

{λ:|dj,λ|<ǫ}

dj,λΨj (x)

︸ ︷︷ ︸

RJ
ǫ

• All methods used a fifth order explicit Runge-Kutta scheme for time integration

and Chemkin for reaction kinetics and diffusion.



Automatic Verification with WAMR
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• Sod shock tube result from Brill, Grenga, Powers, and Paolucci,

2014.

• The error is controlled by WAMR.



Cases Examined

• Overdriven detonations with ambient conditions of 0.421 atm and 293.15 K

• Initial stoichiometric mixture of 2H2 + O2 + 3.76N2

• DCJ ∼ 1972 m/s

• Overdrive is defined as f = D2
o/D

2

CJ

• Overdrives of 1.018 < f < 1.150 were examined



Typical Stable Steady Wave Profile
f = 1.15
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Stable Detonation at High Overdrive
f = 1.15
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For high enough overdrives, the detonation relaxes to a steady propagating wave in

the inviscid case as well as in the diffusive case.



Lower Overdrive: High Frequency Instability, No
Diffusion
f = 1.10
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A single fundamental frequency oscillation occurs at a frequency of 0.97MHz.

This frequency agrees with the experimental observations of Lehr (Astro. Acta, 1972).

Organ pipe oscillation between shock and end of reaction zone: ν ≃ a/ℓ =

(1000 m/s)/(0.0001 m)≃ 10 MHz.



Validation with Lehr’s High Frequency Instability

(Astro. Acta, 1972)

• Shock-induced combustion experi-

ment (Astro. Acta, 1972)

• Stoichiometric mixture of 2H2 +

O2 + 3.76N2 at 0.421 atm

• Observed 1.04 MHz frequency for

projectile velocity corresponding to

f ≈ 1.10

• For f = 1.10, the predicted fre-

quency of 0.97 MHz agrees with

observed frequency and the predic-

tion by Yungster and Radhakrishan

of 1.06 MHz



High Frequency Mode - Viscous vs. Inviscid
f = 1.10
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The addition of viscosity has a stabilizing effect, decreasing the amplitude of the

oscillations. The pulsation frequency relaxes to 0.97 MHz.



Low Frequency Mode Appearance - Inviscid
f = 1.035
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As the overdrive is lowered, multiple frequencies appear, and the amplitude of the

oscillations continues to grow. These multiple frequencies persist at long time.



Low Frequency Mode Appearance - Viscous vs.
Inviscid
f = 1.035
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Viscosity still decreases the amplitude of oscillation, though the effect is reduced

compared to higher overdrives.



Viscous H2-Air Harmonics: Effect of Overdrive
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Viscous H2-Air Harmonics: Effect of Overdrive
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Fine Grids Required for Accurate Shock-Capturing
f = 1.10
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Using the same grid size as shock-fitting (∆x = 4 µm), shock-capturing misses

the essential dynamics.



Fine Grids Required for Accurate Shock-Capturing
f = 1.023

Shock-Fitting
Δx= 4 μm
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Only when ∆x = 1/2 µm is used does the PSD of shock-capturing become nearly

indistinguishable with that of shock-fitting.



Near the Neutral Stability Boundary, Diffusion

Damps the Small Oscillations
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Diffusion Reduces the Magnitude of the First and

Second Harmonics
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Conclusions

• Predictions of complex hydrogen-air detonations can be verified and validated.

• WAMR gives automatic verification; other methods have been verified by

selection of sufficiently fine grids.

• Long time behavior of a hydrogen-air detonation becomes more complex as the

overdrive is decreased.

• Advection and reaction effects usually dominate those of diffusion.

• Physical diffusion causes an amplitude reduction and phase shift; it is more

important near bifurcation points.

• Filtering (shock-capturing, numerical viscosity, WENO, and by inference LES,

implicit time-stepping, kinetic reduction, etc.) alters detonation dynamics.

• Like Bach’s baroque harmonies, those of real detonations are complex; a

Mozartian classicism is still needed to strip away the intricate excess and

capture, in a validated way, the essential character of detonation.
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