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Outline

• Introduction to issues in nitramine (e.g. HMX or RDX) combus-
tion

• Intrinsic Low Dimensional Manifold (ILDM) technique (Maas &
Pope, 1992)

• Wavelet Adaptive Multilevel Representation (WAMR) technique
(Paolucci & Vasilyev)

• Results for one-dimensional viscous H2/O2/Ar detonation with
detailed kinetics

• Preliminary results for HMX gas phase combustion

• Conclusions



RDX/HMX COMBUSTION

• part of ongoing theoretical/experimental LANL study of low pres-
sure ∼ 10 atm combustion of explosives (Son, Liau, et al.),

• similar to solid propellant combustion,

• preheat zone in semi-infinite solid,

• two-phase bubbly liquid foam layer,

• gaseous flame region,

• gas phase reactions greatest computational burden in simulations.
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Some Important Questions

• Do we have resolved, accurate solutions for HMX combustion?

• How can ILDM improve the calculation of HMX combustion?

• How can ILDM, derived for well-stirred systems, be used ratio-
nally in systems in which convection and diffusion are important?



Motivation for ILDM

• Detailed finite rate kinetics critical in reactive fluid mechanics

• Common detailed kinetic models are computationally expensive.

• Expense increases with

– number of species and reactions modeled (linear effect),

– stiffness–ratio of slow to fast time scales, (geometric effect).

• chemical time scales typically more demanding than convection-
diffusion

• Reduced kinetics necessary given current computational resources.



RDX GAS PHASE COMBUSTION SIMULATION

• very similar to HMX

• Uses Yetter’s 45 species, 232 reaction detailed kinetics mecha-
nism,

• Constant pressure

• well-stirred

• fastest time scales ∼ 10−16 s!

• stiffness ratio (fastest time scale/slowest time scale) ∼ 1011
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Compressible Reactive Navier-Stokes Equations

∂ρ

∂t
+
∂

∂x
(ρu) = 0, mass

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + P − τ

)
= 0, momentum

∂

∂t

(
ρ

(
e+
u2

2

))
+
∂

∂x

(
ρu

(
e+
u2

2

)
+ u (P − τ) + q

)
= 0, energy

∂

∂t
(ρyl) +

∂

∂x
(ρuyl + jl) = 0, (l = 1, . . . , L− 1) , elements

∂

∂t
(ρYi) +

∂

∂x
(ρuYi + Ji) = ω̇iMi, (i = 1, . . . , N − L) , species

τ =
4

3
µ
∂u

∂x
, Newtonian gas with Stokes’ assumption

q = −k ∂T
∂x
+
N∑
i=1

Ji

(
hoi +

∫ T
To
cpi
(
T̂
)
dT̂

)
, Fourier’s law

Ji = −ρD∂Yi
∂x
, (i = 1, . . . , N) , Fick’s law

yl = ml
N∑
i=1

φil

Mi
Yi, (l = 1, . . . , L− 1) , element mass fraction

jl = ml
N∑
i=1

φil

Mi
Ji, (l = 1, . . . , L− 1) , element mass flux

N∑
i=1

Yi = 1, mass fraction constraint

L∑
l=1

yl = 1, element mass fraction constraint

ω̇i =
J∑
j=1

ajT
βj exp

(−Ej
<T

) (
ν ′′ij − ν ′ij

) N∏
k=1

(
ρYk

Mk

)ν′
kj

, (i = 1, . . . , N − L) law of mass action

P = ρ<T
N∑
i=1

Yi

Mi
, thermal equation of state

e =
N∑
i=1

Yi

(
hoi +

∫ T
To
cpi(T̂ )dT̂ − <T

Mi

)
. caloric equation of state

N species, L elements, J reactions

3N + L+ 6 equations in 3N + L+ 6 unknowns



Focus on element conservation

• L− 1 explicit element conservation equations formed along with
N − L species evolution equations, instead of the typical N − 1
species equations,

• facilitates a proper use of ILDM in upcoming operator splitting,

• In general element mass fractions change due to mass diffusion

ρ
dyl

dt
= −∂jl
∂x
.

• With simple Fick’s Law with no preferential diffusion

ρ
dyl

dt
= D ∂
∂x


ρ∂yl
∂x


 .

• In uniformly premixed problem with no boundary influences then,
all element concentrations are constant for all time:

dyl

dt
= 0.



Operator Splitting Technique

• Equations are of form

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = g(q(x, t)), q, f , g ∈ <N+2.

where

q =


ρ, ρu, ρ


e+ u2

2


 , ρyl, ρYi


T .

• f models convection and diffusion

• g models reaction source terms

• Splitting

1. Inert convection diffusion step:

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = 0,

d

dt
qi(t) = −∆xf(qi(t)).

∆x is any spatial discretization operator, here a wavelet operator.

2. Reaction source term step:

∂

∂t
q(x, t) = g(q(x, t)),

d

dt
qi(t) = g(qi(t)).

• Operator splitting with implicit stiff source solution can induce non-
physical wave speeds! (LeVeque and Yee, JCP 1990)



ILDM Implementation in Operator Splitting

• Form of equations in source term step:

d

dt




ρ

ρu

ρ
(
e + u

2

2

)

ρyl

ρYi




=




0

0

0

0

ω̇iMi




.

l = 1, . . . , L− 1, i = 1, . . . , N − L.

• Equations reduce to

ρ = ρo, u = uo, e = eo, yl = ylo,

dYi

dt
=
ω̇iMi

ρo
, i = 1, . . . , N − L

• ω̇i has dependency on ρ, e, yl, and Yi

• ODEs for Yi are stiff, usually solved with implicit methods.

• ODEs for Yi can be attacked with manifold methods to remove
stiffness with ILDM with ρ, e, yl, . . . , yL−1 parameterization.



Intrinsic Low-Dimensional Manifold Method (ILDM)

• Uses a dynamical systems approach,

• Does not require imposition of ad hoc partial equilibrium or
steady state assumptions,

• Fast time scale phenomena are systematically equilibrated,

• Slow time scale phenomena are resolved in time,

• Computation time reduced by factor of ∼ 10 for non-trivial com-
bustion problems; manifold gives much better roadmap to find

solution relative to general implicit solution techniques (Norris,

1998)



Necessary Dimension of ILDM

• Spatial discretization of PDEs results in a set of adiabatic, iso-
choric well-stirred reactors,

• N species with L elements at constant e and ρ gives rise to a
(N − L)-dimensional phase space (same as composition space),

• To resolve M slow time scales, we identify M -dimensional sub-
spaces (manifolds),M < (N−L), embedded within the (N−L)-
dimensional phase space on which the M slow time scale events

evolve,

– Fast time scale events rapidly move to the manifold,

– Slow time scale events move on the manifold,

– Because of convection-diffusion, e, ρ, yl vary, requiring a K =

M + L + 1-dimensional manifold.

– If yl conserved (premixed with no preferential diffusion), di-

mension of manifold is reduced by L− 1.
– e.g., for M = 1 in premixed H2/O2/Ar with no preferential

diffusion, we need K = 3.

– e.g., for M = 1 in non-premixed HMX (with H, O, C, and

N) in Ar, we need K = 7. For isobaric, K = 6.



Implementation of ILDMs with Convection-Diffusion

• To minimize phase error, must integrate full equations until suf-
ficiently close to ILDM

• When near ILDM, M slow equations are integrated, other vari-
ables found by table lookup

• Convection-diffusion step applied to all variables perturbs sys-
tem from ILDM

• In next reaction step, orthogonally project to ILDM at different
value of ρ, e, y1, . . . , yN−1.

Orthogonal projection
onto manifold at a different statePerturbation off the 

manifold due to
convection and
diffusion

ILDM (ρ  , e  , y    ..., y      )1 1

ILDM (ρ  , e  , y     ,..., y      )2 2

Y

Y

A

B

1, 2 L-1,2

1,1 L-1,1



Formulation of General Manifolds

• A well-stirred adiabatic, isochoric chemically reactive system of
N species in L elements is modeled by a set of non-linear ordinary

differential equations:

dx

dt
= F(x), x(0) = xo,

x : species concentration; x ∈ <N−L

• Equilibrium points defined by

x = xeq such that F(xeq) = 0.

• Consider a system near equilibrium (the argument can and must
be extended for systems away from equilibrium) with x̃ = x−xeq.

• Linearization gives
dx̃

dt
= Fx · x̃,

where Fx is a constant Jacobian matrix.

• Schur decompose the Jacobian matrix:

Fx = Q ·U ·QT

Q =



...
...

...

q1 q2 · · · qN−L
...
...

...


 , U =




λ1 u1,2 · · · u1,N−L
0 λ2 · · · u2,N−L
0 · · · . . . ...

0 · · · 0 λN−L



, QT =




· · · qT1 · · ·
· · · qT2 · · ·

...

· · · qTN−L · · ·






Formulation of General Manifolds (cont.)

• Q is an orthogonal matrix with real Schur vectors qi in its columns.

• U is an upper triangular matrix with eigenvalues of Fx on its
diagonal, sometimes placed in order of decreasing magnitude.

• The Schur vectors qi form an orthonormal basis which spans the
phase space, <N−L.

• We then define M slow time scales, M < N − L.

• Next define a non-square matrix W which has in its rows the

Schur vectors associated with the fast time scales:

W =




· · · · · · qTM+1 · · · · · ·
· · · · · · qTM+2 · · · · · ·

...

· · · · · · qTN−L · · · · · ·



.

• Letting the fast time scale events equilibrate defines the manifold:

W · F(x) = 0.



Sample ILDM for H2/O2/Ar

• Based on N = 9, J = 37 mechanism of Maas and Warnatz,

• Projection in YH2O, YH2O2 plane and YH2O, YH2O2, e space

• Adiabatic (e = 8×105 J/kg), isochoric (ρ = 5.0×10−4 kg/m3),
yH = 0.01277, yO = 0.10137, yAr = 0.88586,

• We can get e.g. P (ρ, e, YH2O) , T (ρ, e, YH2O) , YH (ρ, e, YH2O) , . . .

• Linear interpolation used for points not in table,

• Captures ∼ 0.1 µs reaction events.
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Sample ILDM for gas phase HMX system

• Based on 45 species, 232 step mechanism of Yetter, et al.,

• Adiabatic (h = 62× 109 erg/g), isobaric (P = 32 bar),

• Projection of ILDM in YN2, YCO2 plane,

• Solution trajectories relax to ILDM on fast time scale.
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Wavelet Adaptive Multilevel Representation (WAMR) Technique

• Summary of standard spatial discretization techniques

– Finite difference-good spatial localization, poor spectral local-

ization, and slow convergence,

– Finite element- good spatial localization, poor spectral local-

ization, and slow convergence,

– Spectral–good spectral localization, poor spatial localization,

but fast convergence.

• Wavelet technique

– See e.g. Vasilyev and Paolucci, “A Fast Adaptive Wavelet Col-

location Algorithm for Multidimensional PDEs,” J. Comp.

Phys., 1997,

– Basis functions have compact support,

– Well-suited for problems with widely disparate spatial scales,

– Good spatial and spectral localization, and fast (spectral) con-

vergence,

– Easy adaptable to steep gradients via adding collocation points,

– Spatial adaptation is automatic and dynamic to achieve pre-

scribed error tolerance.



Ignition Delay in Premixed H2/O2/Ar

• Consider standard problem of Fedkiw, Merriman, and Osher, J.
Comp. Phys., 1996,

• Shock tube with premixed H2, O2, and Ar in 2/1/7 molar ratio,

• Initial inert shock propagating in tube,

• Reaction commences shortly after reflection off end wall,

• Detonation soon develops,

• Model assumptions

– One-dimensional,

– Mass, momentum, and energy diffusion,

– Nine species, thirty-seven reactions,

– Ideal gases with variable specific heats.



Viscous H2 −O2 Ignition Delay with Wavelets and ILDM

• t = 195 µs, 300 collocation points, 15 wavelet scale levels

• ILDM gives nearly identical results as full chemistry

• WAMR spatial discretization, implicit linear trapezoidal convec-
tion diffusion time stepping, explicit (ILDM)/implicit (non-ILDM)

reaction time stepping

• Viscous shocks, inductions zones, and entropy layers spatially
resolved!
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Viscous H2 −O2 Ignition Delay with Wavelets and ILDM

• t = 195 µs

• ILDM gives nearly identical results as full chemistry
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Viscous H2 − O2 Ignition Delay with Wavelets
Global and Fine Scale Structures

• t = 230 µs, Induction zone length: ∼ 470 µm, Viscous shock
thickness: ∼ 50 µm (should use smaller µ),

• No significant reaction in viscous shock zone.
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Preliminary HMX calculations with Convection Diffusion

• Manifold methods not yet implemented,

• We consider constant pressure (0.75 atm) flame propagation into
pure HMX pyrolysis product gas,

• This preliminary problem has invariant element concentration to
facilitate construction of low-dimensional ILDM.

• Fundamental length scales dictated by flame speed which bal-
ances effects of reaction and diffusion,

• Range of intrinsic length scales are severe for HMX flames: sub-
nanometer to millimeter

• Typical geometric length scales of devices may be meters

• Preliminary calculations done on very small geometric domain
with uniform grid (250 cells, and not all scales are resolved),

• Explicit convection diffusion step and implicit reaction step

• For full problem, adaptive technique required with current
computational resources.



Premixed laminar flame in gas phase HMX:

temperature and velocity
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Premixed laminar flame in gas phase HMX: major species
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Premixed laminar flame in gas phase HMX: minor species
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Conclusions

• Given present computational resources, accurate solution for HMX
gas phase chemistry with detailed kinetics will require some means

to reduce chemical stiffness as well as an adaptive multilevel

scheme for spatial resolution.

• A high dimension ILDM (at least K = 6) coupled with a WAMR
technque is a promising candidate.

• Such schemes have been demonstrated on simpler systems and
are currently being applied to HMX.


