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Some motivating questions...

We wish to use manifold methods to filter and reduce challenging mul-
tiscale problems, but such methods are burdened with many questions:

Just what is a SACIM?:

Slow,
Attracting,
Canonical,
Invariant,
Manifold.

Does it exist?

Is it easy to identify?

Does it actually work?
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These are old questions....

(focused on the related topic of limit cycles)
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on which understanding has varied with time....
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and for which questions remain!
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Taxonomy

Invariant Manifolds (IMs) are sets of points which are invariant
under the action of an underlying dynamic system.

Any trajectory of a dynamic system is an IM.

IMs may be locally or globally fast or slow, attracting or repelling.

Slow or fast does not imply attracting or repelling and vice versa.

We will evaluate the fast/slow and attracting/repelling nature of
Canonical Invariant Manifolds (CIMs) constructed by connecting
equilibria to determine heteroclinic orbits (Davis-Skodje, 1999).
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Taxonomy, cont.

It is relatively easy to construct CIMs by numerical integration.

Many CIMs exist, but we are only interested in those that connect
to physical equilibrium.

It is desirable to identify those CIMs to which

dynamics are restricted to those which are slow, and
neighboring trajectories are rapidly attracted.

We call such CIMs Slow Attracting Canonical Invariant Manifolds

(SACIMs).

A global SACIM may represent the optimal reduction potentially
enabling dramatic computational accuracy and efficiency in
multiscale problems.

Manifolds identified by Davis-Skodje construction are guaranteed
to be CIMs; they are not guaranteed to be SACIMs, even locally!
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Brief review

We analyze by expanding on the stretching-based diagnostic tools, in
the limit of zero diffusion, described by

Adrover, Creta, Giona, and Valorani, 2007, Stretching-based
diagnostics and reduction of chemical kinetic models with
diffusion, Journal of Computational Physics, 225(2): 1442-1471.

Mengers, 2012, Slow invariant manifolds for reaction-diffusion
systems, Ph.D. Dissertation, University of Notre Dame.

For discussion of the impact of diffusion on SACIMs, see

Mengers and Powers, 2013, One-dimensional slow invariant
manifolds for fully coupled reaction and micro-scale diffusion,
SIAM Journal on Applied Dynamical Systems, 12(2): 560-595.
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Theoretical framework for spatially homogeneous

combustion within a closed volume

dz

dt
= f(z), z(0) = zo, z, zo, f ∈ R

N .

z represents a set of N species concentrations, assuming all linear
constraints have been removed.

f(z) embodies the law of mass action and other thermochemistry.

f(z) = 0 defines multiple equilibria within R
N .

f(z) is such that a unique stable equilibrium exists for physically
realizable values of z; the eigenvalues of the Jacobian

J =
∂f

∂z
,

are guaranteed real and negative at such an equilibrium (Powers &
Paolucci, American Journal of Physics, 2008).
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SACIM construction strategy: heteroclinic orbit

connection

Davis and Skodje suggested a
CIM construction strategy.

It employs numerical
integration from a saddle to
the sink.

This guarantees a CIM.

It may be a SACIM.

SACIM

Saddle

Sink
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Failure of SACIM construction strategy

It may not be a SACIM.

The CIM will be attracting in
the neighborhood of each
equilibrium.

The CIM need not be
attractive away from either
equilibrium.

CIM

Saddle

Sink
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Sketch of a volume locally traversing a nearby CIM

Saddle

SinkCIM

The local differential volume 1) translates, 2) stretches, and 3) rotates.
Its magnitude can decrease as it travels, but elements can still be repelled
from the CIM. All trajectories are ultimately attracted to the sink.
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Local decomposition of motion

dz

dt
= f(z), z(0) = zo, zo ∈ CIM,

d

dt
(z − zo) = f(zo)

︸ ︷︷ ︸

translation

+ Js|zo
· (z − zo)

︸ ︷︷ ︸

stretch

+ Ja|zo
· (z − zo)

︸ ︷︷ ︸

rotation

+ . . . .

Here, we have

J =
∂f

∂z
= Js + Ja,

Js =
J + JT

2
, Ja =

J− JT

2
.

The symmetry of Js allows definition of a real orthonormal basis.

In 3d, the rotation vector ω of the anti-symmetric Ja defines the axis of
rotation; can be extended for higher dimensions.
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Stretching rates

The local relative volumetric stretching rate is

1

V

dV

dt
≡ ˙ln V = trJ = trJs.

The stretching rate σ associated with any unit vector α is

σ = α
T · J · α = α

T · Js · α.

The above result is general; α need not be an eigenvector of J or
Js, and σ need not be an eigenvalue of J or Js.

If they were eigenvalue/eigenvector pairs of Js, they would
represent the principal axes of stretch and the associated principal
values.
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Stretching rates, cont.

Consider now the motion along a given CIM:

The unit tangent vector, αt, need not be a principal axis of stretch.

The tangential stretching rate, σt = α
T
t · Js · αt, can be positive or

negative.

The normal stretching rates, σn,i = α
T
n,i · Js · αn,i, can be positive

or negative.

The sum of stretching rates equals the relative volumetric
stretching rate:

˙lnV = trJ = trJs = σt + σn,1 + · · · + σn,N−1.
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Necessary conditions for a SACIM

For a slow CIM, attraction to the CIM must be faster than motion
on the CIM (a type of normal hyperbolicity):

κ ≡
mini|σn,i|

|σt|
≫ 1.

for an attractive CIM, either
all normal stretching rates, σn,i, must be negative,

σn,i < 0, i = 1, . . . , N − 1,

or, if some of the normal stretching rates are positive, then
the relative volumetric stretching rate must be negative,

˙
ln V < 0, and

the local rotation rate must be much greater than the largest

normal stretching rate,

µ ≡
|ω|

maxi σn,i

=
||Ja||

maxi σn,i

≫ 1.
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Procedure for local SACIM identification

Identify all equilibria f(z) = 0.

Determine the Jacobian, J = ∂f/∂z.

Evaluate J near each equilibrium to determine its source, sink,
saddle, etc. character.

Numerically integrate from candidate saddles into the unique
physical sink to determine a CIM, zCIM , which is a candidate
SACIM.

Numerically determine the unit tangent, αt, along the CIM:

αt =
f(zCIM )

||f(zCIM )||
.

Determine the tangential stretching rate, σt, via

σt = α
T
t · Js · αt = α

T
t · J · αt.
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Procedure for local SACIM identifcation, cont.

Use a Gram-Schmidt procedure to identify N − 1 unit normal
vectors, thus forming the orthonormal basis

{αt,αn,1, . . . ,αn,N−1} .

Note that αn,i are not eigen-directions of J, so the procedure
works for non-normal systems, though questions remain for highly
non-normal, near singular systems.

Form the N × (N − 1) orthogonal matrix Qn composed of the unit
normal vectors

Qn =








...
...

...
...

αn,1 αn,2

... αn,N−1

...
...

...
...








.
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Procedure for local SACIM identification, conc.

Form the reduced (N − 1)× (N − 1) Jacobian Jn for the motion in
the hyperplane normal to the CIM:

Jn = QT
n · Js ·Qn.

Find the eigenvalues and eigenvectors of Jn. The eigenvalues give
the extreme values of normal stretching rates σn,i, i = 1, . . . , N − 1.
The normalized eigenvectors of Jn give the directions associated
with the extreme values of normal stretching, αn,i.

We have thus

σn,i = α
T
n,i · J · αn,i = α

T
n,i · Js · αn,i, i = 1, . . . , N − 1.

Identify Ja and then ω and |ω|. Note that |ω| =
√

−tr(Ja · Ja)/2.
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Example

Model equations:

dz1

dt
=

1

20
(1 − z2

1),

dz2

dt
= −2z2 −

35

16
z3 + 2(1 − z2

1)z3,

dz3

dt
= z2 + z3.

Jacobian:

J =





− z1
10

0 0
−4z1z3 −2 −35

16
+ 2(1 − z2

1)
0 1 1



 .

Two finite equilibria:

“non-physical” saddle at R1 : (z1, z2, z3)
T = (−1, 0, 0)T , and a

“physical” sink at R2 : (z1, z2, z3)
T = (1, 0, 0)T .
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Example, cont.: dV/dt, IM, and σt

Relative volumetric deformation rate:

1

V

dV

dt
= ˙ln V = trJ = −1 −

z1

10
.

The CIM composed of the heteroclinic orbit connecting the saddle
at R1 to the sink at R2 is the line

z1 = s, z2 = 0, z3 = 0, s ∈ [−1, 1].

For the entire CIM, the relative volume deformation rate is
negative:

˙ln V ∈

[

−
11

10
,−

9

10

]

.

By inspection, αt = (1, 0, 0)T .

Thus, the tangential stretching rate is

σt = α
T
t · J · αt = −

z1

10
,

which gives σt ∈ [1/10,−1/10] on the CIM from R1 to R2.
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Example, cont.: Qn, J, and Js

A trivial Gram-Schmidt procedure yields αn,1 = (0, 1, 0)T and
αn,2 = (0, 0, 1)T , and thus

Qn =





0 0
1 0
0 1



 .

On the CIM,

J =





− z1

10
0 0

0 −2 − 35

16
+ 2(1 − z2

1
)

0 1 1



 ,

Js =





− z1

10
0 0

0 −2 − 19

32
+ 1 − z2

1

0 − 19

32
+ 1 − z2

1
1



 , and

ω = (−51/32 + 1 − z2

1
, 0, 0)T , |ω| ∼ 1.
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Example, cont.: Jn and σn,i

The reduced Jacobian for the normal hyperplane is

Jn = QT
n · Js ·Qn =

(
−2 −19

32
+ 1 − z2

1

−19
32

+ 1 − z2
1 1

)

.

The eigenvalues of Jn give σn,i:

σn,i = −
1

2
±

√

2473 − 832z2
1 + 1024z4

1

32
.

σn,1 ∼ 1 for z1 ∈ [−1, 1]; potential divergence from CIM.

σn,2 ∼ −2 for z1 ∈ [−1, 1].

κ ∼ 10; thus, the CIM is slow.

|ω| ∼ σn,1 ∼ 1; µ ∼ 1: the rotation is slow enough to allow some
trajectories to diverge from the CIM away from equilibrium.

Positive normal stretching does not guarantee divergence from the
CIM; it permits it. Rotation can orient a volume into a region
where trajectories diverge from the CIM. Near R1, the time spent
in convergent regions overwhelms that spent in divergent regions.
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Example, cont.: CIM is not a SACIM!

There are regions of the CIM
which do not attract nearby
trajectories in the region far
from equilibrium.

This reflects the local influence
of a positive normal stretching
rate, σn,1 ∼ 1 whose influence
is realized due to modest local
rotation, |ω| ∼ 1.

Projection onto the CIM in
regions away from equilibrium
would thus induce significant
error in the prediction of
certain state variables.
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Implications for combustion systems

The example shares important features with combustion systems:

unique stable physical equilibrium, and
non-physical saddle equilibrium.

The example may not share other important features with
combustion systems:

no obvious imposed constraints from conserved variables, and
no clear entropy scalar guaranteed to be increasing on any physical
path to equilibrium.

An upcoming example from Friday’s Powers/Mengers talk will
explore relevant extensions to H2/air combustion, along with open
systems, multiple physical equilibria, and limit cycles.
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Preliminary results for H2-air kinetics

R6

z 2
(m
ol
/g

)

R1

0

×10
-3

4

R7

0

2

4

×10
-3

SACIM

z 3
  

(m
o
l/
g)

26 4

z
1
 (mol/g)

0

×10
-3

Six species model of Ren, Pope, et al., JCP, 2006 studied under
conditions considered by us, JCP, 2009.

We, with A. N. al-Khateeb, have stretching-based diagnostics.

Preliminary results indicate we have here a SACIM.
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A question which extends beyond combustion!

Note: attraction also needed!
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Conclusions and questions

Lorenz asked and answered “The slow manifold–what is it?”

The more fundamental question, “The slow manifold–where is
it?,” remains to be answered robustly.

Stretching- and rotation-based diagnostics have utility in
answering a related question, “When is a CIM a SACIM?”

Our example showed for a problem with one universally positive
normal stretching rate that local repulsion from a CIM was
possible, overcome only near an equilibrium sink.

Thus, heteroclinic orbit connection is not guaranteed to identify a
SACIM.

If the method of heteroclinic connection of equilibria cannot
identify a SACIM, can any method do so?

Our Friday talk will consider open systems, multiple equilibria,
and limit cycles, and raise further fundamental questions!
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