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Motivation

e Develop verified and validated high accuracy flow

solver for Euler equations in space and time
— verification: solving the equations “right”

— validation: solving the right equations

e ultimate use for fundamental shock stability questions

for inert and reactive flows, detonation shock

dynamics, shape optimization




Review: Blunt Body Solutions

e Lin and Rubinov, J. Math. Phys., 1948
e Van Dyke, J. Aero/Space Sci., 1958

e Evans and Harlow, J. Aero. Sci., 1958
e Moretti and Abbett, AIAA J., 1966

e Kopriva, Zang, and Hussaini, AIAA J., 1991

e Kopriva, CMAME, 1999

e Brooks and Powers, J. Comp. Phys., 2004 (to appear)




Model: Euler Equations
e two-dimensional
® axisymmetric

® Inviscid

e calorically perfect ideal gas




Model: Euler Equations
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Model: Secondary Equations
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Flow Geometry and Boundary Conditions
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® body: zero mass flux
e shock: RH jump
e center: homeoentropic

e outflow: supersonic




Flow Geometry in Transformed Space
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Outline: Pseudospectral Solution Procedure

e Define collocation points in computational space.

e Approximate all continuous functions and their spatial
derivatives with Lagrange interpolating polynomials,
which have global support for high spatial accuracy.

spatial discretization algebra
> DAEsS > ODEs.

e PDEs

e Cast ODEs as & = q(x).

e Solve ODEs using high accuracy solver LSODA.




Taylor-Maccoll: Flow over a Sharp-Nose Cone

e Similarity solution

avallable for flow over

q
7 a sharp cone

e Non-trivial post-shock

flow field

e |deal verification

benchmark




Verification: Taylor-Maccoll Time-Relaxation

o VM, =3.5
e 5 X 17 grid
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Verification: Taylor-Maccoll Spatial Resolution

® spectral convergence

e roundoff error realized
at coarse resolution,
Hhx 17
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e run time ~ 10% s;
10" 10°
number of nodes in n direction 800 MHZ maChlne




Blunt Body Flow: Mach Number Field

e R=V7
o VM, =3.5

e 17 %X 9grid

e transonic flow field

predicted

e qualitatively correct

e not a verification




Blunt Body Flow: Pressure Field

e high pressure at nose
e gualitatively correct

e not a verification




Blunt Body Flow: Vorticity Field

® Helmholtz Theorem:
d
2, Vp x Vp, shock

curvature, flow

dwe
di

divergence induce

e intuition difficult

e not a verification




Verification: Blunt Body Pressure Coefficient

—— Pseudospectral prediction
- - - Modified Newtonian theory

— 2]9(5,0,7_)_1
°Cp = M

e Newtonian theory gives

prediction in high Mach

number limit

® comparison quantitatively

excellent

e not global




Verification: Blunt Body Entropy Field

ds _ 0s v —

e if stable, % — (0 as

r — o0
e thus, v-Vs — 0

e guantitative difference

approaches roundoff

error




Proof: Total Enthalpy is Constant

2 (u® 4+ w?) (definition)

° pdgo = | OZZ (from Euler equations)

N~ =

e /1, = constant on streamline ast — o0

e RH shock jump equations admit no change in

e If H, is spatially homogeneous before the shock, it
will remain so after the shock; H, = constant.
QED.




Verification: Blunt Body Total Enthalpy

e [ : atrue constant

e deviation from freestream

value measures error

e 17 x 9, error ~ 107°

e 29 x 15, error ~ 107

e good quantitative

verification




Verification: Blunt Body Grid Convergence

® “exact solution” from
060 X 33 grid
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number of nodes e best quantitative

verification




Validation: Flow over a Sphere

e Shock shape
predictions match
Billig’s (JSR,
1967)

- Body surface
- - - Pseudospectral prediction

— Billig 1 e Error ~ 10_2
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Unsteady Problem: Acoustic Wave/Shock Interaction

40 6
reduced frequency (f,)

e |ow-frequency
freestream input

disturbance

e |ow-amplitude,
high-frequency
response captured by

high accuracy method

e 33 X 17 grid; run
time, 7.5 hrs.




Conclusions

e Pseudospectral method coupled with shock fitting
gives solutions with high accuracy and spectral

convergence rates in space for Euler equations.

e Standardized formulation of 2 = q(x) allows use of

Integration methods with high accuracy in time.
e Algorithm has been verified to 10~ 2.
e Predictions have been validated to 10~2.

e Discrepancy between prediction and experiment is

not attributable to truncation error.




e Challenge to determine which factor (e.g. neglected
physical mechanisms, inaccurate constitutive data,
measurement error, etc.) best explains the remaining

discrepancy between prediction and observation.

e Challenge also to exploit verification and validation for

first order shock capturing methods, necessary for

complex geometries.




