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Motivation

• Develop verified and validated high accuracy flow

solver for Euler equations in space and time

– verification: solving the equations “right”

– validation: solving the right equations

• ultimate use for fundamental shock stability questions

for inert and reactive flows, detonation shock

dynamics, shape optimization



Review: Blunt Body Solutions

• Lin and Rubinov, J. Math. Phys., 1948

• Van Dyke, J. Aero/Space Sci., 1958

• Evans and Harlow, J. Aero. Sci., 1958

• Moretti and Abbett, AIAA J., 1966

• Kopriva, Zang, and Hussaini, AIAA J., 1991

• Kopriva, CMAME, 1999

• Brooks and Powers, J. Comp. Phys., 2004 (to appear)



Model: Euler Equations

• two-dimensional

• axisymmetric

• inviscid

• calorically perfect ideal gas



Model: Euler Equations
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Model: Secondary Equations
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Flow Geometry and Boundary Conditions
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• body: zero mass flux

• shock: RH jump

• center: homeoentropic

• outflow: supersonic



Flow Geometry in Transformed Space
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• (r, z, t) → (ξ, η, τ)

• unsteady

• shock-fitted to avoid low

first order accuracy of

shock capturing



Outline: Pseudospectral Solution Procedure

• Define collocation points in computational space.

• Approximate all continuous functions and their spatial

derivatives with Lagrange interpolating polynomials,

which have global support for high spatial accuracy.

• PDEs
spatial discretization−−−−−−−−−−−−→ DAEs

algebra−−−−→ ODEs.

• Cast ODEs as dx
dt

= q(x).

• Solve ODEs using high accuracy solver LSODA.



Taylor-Maccoll: Flow over a Sharp-Nose Cone
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• Similarity solution

available for flow over

a sharp cone

• Non-trivial post-shock

flow field

• Ideal verification

benchmark



Verification: Taylor-Maccoll Time-Relaxation
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• M∞ = 3.5

• 5 × 17 grid

• t → ∞, error → 10−12



Verification: Taylor-Maccoll Spatial Resolution
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• spectral convergence

• roundoff error realized

at coarse resolution,

5 × 17

• run time ∼ 102 s;

800 MHz machine



Blunt Body Flow: Mach Number Field
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• M∞ = 3.5

• 17 × 9 grid

• transonic flow field

predicted

• qualitatively correct

• not a verification



Blunt Body Flow: Pressure Field
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• high pressure at nose

• qualitatively correct

• not a verification



Blunt Body Flow: Vorticity Field
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• Helmholtz Theorem:
dρ
dt

, ∇p ×∇ρ, shock

curvature, flow

divergence induce dωθ

dt

• intuition difficult

• not a verification



Verification: Blunt Body Pressure Coefficient
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• Cp = 2p(ξ,0,τ)−1
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• Newtonian theory gives

prediction in high Mach

number limit

• comparison quantitatively

excellent

• not global



Verification: Blunt Body Entropy Field
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• ds
dt

= ∂s
∂t

+ ∇ · v = 0

• if stable, ∂s
∂t

→ 0 as

t → ∞

• thus, v · ∇s → 0

• quantitative difference

approaches roundoff

error



Proof: Total Enthalpy is Constant

• Ho ≡ γ
γ−1

p
ρ

+ 1
2

(
u2 + w2

)
(definition)

• ρdHo

dt
= ρT

ds

dt︸︷︷︸
=0

+
∂p

∂t︸︷︷︸

→ 0

(from Euler equations)

• Ho = constant on streamline as t → ∞

• RH shock jump equations admit no change in Ho

• If Ho is spatially homogeneous before the shock, it

will remain so after the shock; Ho = constant.

QED.



Verification: Blunt Body Total Enthalpy
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• Ho: a true constant

• deviation from freestream

value measures error

• 17 × 9, error ∼ 10−5

• 29 × 15, error ∼ 10−9

• good quantitative

verification



Verification: Blunt Body Grid Convergence
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• “exact solution” from

65 × 33 grid

• spectral convergence

• error → 10−12

• best quantitative

verification



Validation: Flow over a Sphere
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• Shock shape

predictions match

Billig’s (JSR,

1967)

• Error ∼ 10−2



Unsteady Problem: Acoustic Wave/Shock Interaction
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• low-frequency

freestream input

disturbance

• low-amplitude,

high-frequency

response captured by

high accuracy method

• 33 × 17 grid; run

time, 7.5 hrs.



Conclusions

• Pseudospectral method coupled with shock fitting

gives solutions with high accuracy and spectral

convergence rates in space for Euler equations.

• Standardized formulation of dx
dt

= q(x) allows use of

integration methods with high accuracy in time.

• Algorithm has been verified to 10−12.

• Predictions have been validated to 10−2.

• Discrepancy between prediction and experiment is

not attributable to truncation error.



• Challenge to determine which factor (e.g. neglected

physical mechanisms, inaccurate constitutive data,

measurement error, etc.) best explains the remaining

discrepancy between prediction and observation.

• Challenge also to exploit verification and validation for

first order shock capturing methods, necessary for

complex geometries.


