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Motivation

• Detailed finite rate kinetics critical in reactive fluid mechanics:

– Candle flames,

– Atmospheric chemistry,

– Internal combustion engines,

– Gas phase reactions in energetic solid combustion.

• Common detailed kinetic models are computationally expensive.

– 150 hr supercomputer time for calculation of steady, laminar,

axisymmetric, methane-air diffusion flame (Smooke)

– Expense increases with

∗ number of species and reactions modeled (linear effect),

∗ stiffness–ratio of slow to fast time scales, (geometric effect).

– Fluid mechanics time scales: 10−5 s to 101 s.

– Reaction time scales: 10−11 s to 10−5 s.

• Reduced kinetics necessary given current computational resources.

• Adaptive discretization necessary for fine spatial structures.

• Inclusion of physical diffusion necessary to capture correct physics

and for numerical convergence.



Goals

• Implement robust new reduced kinetic method (Intrinsic Low

Dimensional Manifold-ILDM) of Maas and Pope (1992)

• Extend ILDM method to systems with time and space depen-

dency, along with variable energy and density

• Extend WAMR technique (Paolucci & Vasilyev) to combustion

systems,

• Couple WAMR and ILDM techniques.



Common Reduced Kinetics Strategies

• Fully frozen limit: no reaction allowed, uninteresting

• Fully equilibrated limit: commonly used in some problems

– has value for events in which fluid time scales are slow with

respect to reaction time scales,

– misses events which happen on chemical time scales.

• Simple one and two step models

– require significant intuition and curve fitting,

– can give good first order results,

– are often not robust.

• Partial equilibrium and steady-state assumptions

– again require intuition,

– are not robust.

• Sensitivity analysis

– can remove need to include unimportant reactions,

– not guaranteed to remove stiffness.



Intrinsic Low-Dimensional Manifold Method (ILDM)

• Uses a dynamical systems approach,

• Does not require imposition of ad hoc partial equilibrium or

steady state assumptions,

• Fast time scale phenomena are systematically equilibrated,

• Slow time scale phenomena are resolved in time,

• N species with L elements and variable e and ρ gives rise to

a (N − L) + 2-dimensional phase space (same as composition

space),

• Identifies M -dimensional subspaces (manifolds), M < (N−L)+

2, embedded within the (N −L) + 2-dimensional phase space on

which slow time scale events evolve,

– Fast time scale events rapidly move to the manifold,

– Slow time scale events move on the manifold.

• Computation time reduced by factor of ∼ 10 for non-trivial com-

bustion problems; manifold gives much better roadmap to find

solution relative to general implicit solution techniques (Norris,

1998)



Simplest Example

dx

dt
= −10x, x(0) = xo,

dy

dt
= −y, y(0) = yo.

• Stable equilibrium at (x, y) = (0,0); stiffness ratio = 10.

• ILDM is x = 0
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• Parameterization of manifold: x(s) = 0; y(s) = s.

dy

dt
=
dy

ds

ds

dt
, chain rule

−y(s) =
dy

ds

ds

dt
, substitute from ODE and manifold

−s = (1)
ds

dt
, no longer stiff!

s = soe
−t,

x(t) = 0; y(t) = soe
−t.

• Projection onto manifold for so, induces small phase error.



Formulation of General Manifolds

• A well stirred chemically reactive system is modeled by a set of

non-linear ordinary differential equations:

dx

dt
= F(x), x(0) = xo,

x : species concentration;x ∈ ℜN

• Equilibrium points defined by

x = xeq such that F(xeq) = 0.

• Consider a system near equilibrium (the argument can and must

be extended for systems away from equilibrium) with x̃ = x−xeq.

• Linearization gives
dx̃

dt
= Fx · x̃,

where Fx is a constant Jacobian matrix.

• Schur decompose the Jacobian matrix:

Fx = Q · U ·QT

Q =











...
...

...

q1 q2 · · · qN
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...
...
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λ1 u12 · · · u1N

0 λ2 · · · u2N

0 · · ·
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Formulation of General Manifolds (cont.)

• Q is an orthogonal matrix with real Schur vectors qi in its columns.

• U is an upper triangular matrix with eigenvalues of Fx on its

diagonal, sometimes placed in order of decreasing magnitude.

• The Schur vectors qi form an orthonormal basis which spans the

phase space, ℜN .

• We then define M slow time scales.

• We also define L algebraic constraints for L elements

• Next define a non-square matrix W which has in its rows the

Schur vectors associated with the fast time scales:

W =































· · · · · · qTL+M+1 · · · · · ·

· · · · · · qTL+M+2 · · · · · ·

...

· · · · · · qTN · · · · · ·































.

• Letting the fast time scale events equilibrate defines the manifold:

W · F(x) = 0.



Wavelet Adaptive Multilevel Representation (WAMR) Technique

• Summary of standard spatial discretization techniques

– Finite difference-good spatial localization, poor spectral local-

ization, and slow convergence,

– Finite element- good spatial localization, poor spectral local-

ization, and slow convergence,

– Spectral–good spectral localization, poor spatial localization,

but fast convergence.

• Wavelet technique

– See e.g. Vasilyev and Paolucci, “A Fast Adaptive Wavelet Col-

location Algorithm for Multidimensional PDEs,” J. Comp.

Phys., 1997,

– Basis functions have compact support,

– Well-suited for problems with widely disparate spatial scales,

– Good spatial and spectral localization, and fast (spectral) con-

vergence,

– Easy adaptable to steep gradients via adding collocation points,

– Spatial adaptation is automatic and dynamic to achieve pre-

scribed error tolerance.



Wavelet Basis Functions

-0.5

0.0

0.5

1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Left Boundary Wavelets

Interior Wavelet

• Boundary-modified Daubechies autocorrelation functions and in-

terior Daubechies autocorrelation function of order four

• Scaling function

φj,k(x) = φ(2jx− k)

• Definition of the wavelet function on the first level

ψ1,0(x) = φ(2x− 1)

• Definition of the wavelet function on j level

ψj,k+1(x) = ψ(2j−1x− k)



Algorithm Description

• Approximate initial function using wavelet basis,

PJu(x) =
∑

k
u0,kφ0,k(x) +

J
∑

j=1

∑

k
dj,kψj,k(x)

• Discard non-essential wavelets if amplitude below threshold value

(here we look only at P , T , u, and ρ, species could be included),

PJu(x) = uJ≥(x) + uJ<(x)

uJ≥(x) =
∑

k
u0,kφ0,k(x) +

J
∑

j=1

∑

k
dj,kψj,k(x), |dj,k| ≥ ǫ

uJ<(x) =
J
∑

j=1

∑

k
dj,kψj,k(x), |dj,k| < ǫ

• Assign a collocation point to every essential wavelet,

• Establish a neighboring region of potentially essential wavelets,

• Discretize the spatial derivatives; five points used here (related

to order of wavelet family),

• Integrate in time; linearized trapezoidal method (implicit) used

here,

• Repeat



Sample Wavelet Approximation to Arbitrary Function
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• Function shown has large and small length scale variation,

• Wavelets concentrated in regions of steep gradients.



Ignition Delay in Premixed H2-O2

• Consider standard problem of Fedkiw, Merriman, and Osher, J.

Comp. Phys., 1996,

• Shock tube with premixed H2, O2, and Ar in 2/1/7 molar ratio,

• Initial inert shock propagating in tube,

• Reaction commences shortly after reflection off end wall,

• Detonation soon develops,

• Model assumptions

– One-dimensional,

– Mass, momentum, and energy diffusion,

– Nine species, thirty-seven reactions,

– Ideal gases with variable specific heats.



Compressible Reactive Navier-Stokes Equations for H2-O2 Problem

∂ρ

∂t
+

∂

∂x
(ρu) = 0, mass

∂

∂t
(ρu) +

∂

∂x

(

ρu2 + P − τ
)

= 0, momentum

∂

∂t

(

ρ

(

e+
u2

2

))

+
∂

∂x

(

ρu

(

e+
u2

2

)

+ u (P − τ) + q

)

= 0, energy

∂

∂t
(ρYi) +

∂

∂x
(ρuYi + ji) = ω̇iMi, species

ω̇i =
M
∑

j=1

ajT
βj exp

(

−Ej

ℜT

)

νij

N
∏

k=1

(

ρYk

Mk

)νkj

, law of mass action

P = ρℜT
N
∑

i=1

Yi

Mi

, thermal equation of state

e =
N
∑

i=1

Yi

(

ho
i +

∫ T

To

cpi(T̂ )dT̂ −
ℜT

Mi

)

, caloric equation of state

τ =
4

3
µ
∂u

∂x
, Newtonian gas with Stokes’ assumption

ji = −ρ
N
∑

j=1

Dij

∂

∂x

(

Yj

Mj

1
∑N

k=1
Yk/Mk

)

, Fick’s law

q = −k
∂T

∂x
Fourier’s law.

N = 9 species: H2, O2, H , O, OH , H2O2, H2O, HO2, Ar

M = 37 reactions



Operator Splitting Technique

• Equations are of form

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = g(q(x, t)).

where

q =



ρ, ρu, ρ



e+
u2

2



 , ρYi





T

• f models convection and diffusion

• g models reaction source terms

• Splitting

1. Inert convection diffusion step:

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = 0,

d

dt
qi(t) = −∆xf(qi(t)).

∆x is wavelet discretization operator.

2. Reaction source term step:

∂

∂t
q(x, t) = g(q(x, t)),

d

dt
qi(t) = g(qi(t)).

• Operator splitting with implicit stiff source solution can induce non-

physical wave speeds! (LeVeque and Yee, JCP 1990)



ILDM Implementation in Operator Splitting

• Form of equations in source term step:

d

dt































ρ

ρu

ρ
(

e + u2

2

)

ρYi































=































0

0

0

ω̇iMi































.

• Equations reduce to

ρ = ρo, u = uo, e = eo,
dYi
dt

=
ω̇iMi

ρo
.

• ω̇i has dependency on ρ, e, and Yi

• ODEs for Yi can be attacked with manifold methods when man-

ifold with ρ, e, H, O, Ar parameterization is available.

• In premixed problem, H, O, and Ar element concentrations are

constant, reducing the dimension by three!

• TakingM = 1, and parameterizing by YH2O, we require aK = 3-

dimensional lookup table for Yi = Yi(YH2O, ρ, e).

• Full equations integrated until sufficiently close to manifold

• Once on manifold, simple projection used to return to manifold

following convection-diffusion step



Sample ILDM for H2 − O2

• Projection of ILDM in H2O, H2O2 plane,

• Adiabatic (e = 525 kJ/kg), isochoric (ρ = 0.25 kg/m3), element

concentrations of H, O, and Ar constant,

• Complete manifold tabulated in three dimensions: ρ, e, YH2O,

• So we have e.g. P (ρ, e, YH2O) , T (ρ, e, YH2O) , YH (ρ, e, YH2O) , . . .

• Linear interpolation used for points not in table,

• Captures ∼ 0.1 µs reaction events.
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Viscous H2 −O2 Ignition Delay with Wavelets and ILDM

• t = 195 µs, 300 collocation points, 15 wavelet scale levels

• ILDM gives nearly identical results as full chemistry

• WAMR spatial discretization, implicit linear trapezoidal convec-

tion diffusion time stepping, explicit (ILDM)/implicit (non-ILDM)

reaction time stepping

• Viscous shocks, inductions zones, and entropy layers spatially

resolved!
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Viscous H2 −O2 Ignition Delay with Wavelets and ILDM

• t = 195 µs

• ILDM gives nearly identical results as full chemistry
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Post Reflection Entropy Layer?: Viscous Wavelet Results

• No significant entropy layer evident on macroscale after shock

reflection when resolved viscous terms considered,

• Inviscid codes with coarse gridding introduce a larger entropy

layer due to numerical diffusion,

• Unless suppressed, unphysically accelerates reaction rate.
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Post Reflection Entropy Layer: Viscous Wavelet Results

• small entropy layer evident on finer scale,

• temperature rise ∼ 5 K; dissipates quickly,

• inviscid calculations before adjustment give persistent tempera-

ture rise of ∼ 20 K; reaction acceleration small.
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Viscous H2 − O2 Ignition Delay with Wavelets

Global and Fine Scale Structures

• t = 230 µs, Induction zone length: ∼ 470 µm, Viscous shock

thickness: ∼ 50 µm (should use smaller µ),

• No significant reaction in viscous shock zone.
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Viscous H2 −O2 Ignition Delay with Wavelets,

Instantaneous Distributions of Collocation Points

• t = 180 µs, two-shock structure with consequent collocation

point distribution,

• t = 230 µs, one-shock structure with evolved collocation point

distribution.
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Conclusions

• The WAMR method gives dramatic spatial resolution in viscous

one-dimensional H2/O2 detonations with detailed kinetics; vis-

cous shocks, entropy layers, and induction zones are resolved,

• Preliminary results on well-stirred systems indicate at least a ten-

fold increase in computational efficiency with use of intrinsic low

dimensional manifolds,

• Operator splitting allows straightforward implementation of ILDM

method in solving PDEs.


