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Motivation
e Dectailed finite rate kinetics critical in reactive fluid mechanics:

— Candle flames,
— Atmospheric chemistry,
— Internal combustion engines,
— Gas phase reactions in energetic solid combustion.
e Common detailed kinetic models are computationally expensive.
— 150 hr supercomputer time for calculation of steady, laminar,
axisymmetric, methane-air diffusion flame (Smooke)
— Expense increases with

« number of species and reactions modeled (linear effect),

* stiffness—ratio of slow to fast time scales, (geometric effect).
— Fluid mechanics time scales: 107 s to 10! s.

— Reaction time scales: 1071 s to 107 s.
e Reduced kinetics necessary given current computational resources.
e Adaptive discretization necessary for fine spatial structures.

e Inclusion of physical diffusion necessary to capture correct physics

and for numerical convergence.



Goals

e Implement robust new reduced kinetic method (Intrinsic Low

Dimensional Manifold-ILDM) of Maas and Pope (1992)

e Fixtend ILDM method to systems with time and space depen-

dency, along with variable energy and density

e Extend WAMR technique (Paolucci & Vasilyev) to combustion

systems,

e Couple WAMR and ILDM techniques.



Common Reduced Kinetics Strategies

e Fully frozen limit: no reaction allowed, uninteresting
e Fully equilibrated limit: commonly used in some problems

— has value for events in which fluid time scales are slow with

respect to reaction time scales,

— misses events which happen on chemical time scales.
e Simple one and two step models

— require significant intuition and curve fitting,
— can give good first order results,

— are often not robust.
e Partial equilibrium and steady-state assumptions
— again require mntuition,
— are not robust.
e Sensitivity analysis
— can remove need to include unimportant reactions,

— not guaranteed to remove stiffness.



Intrinsic Low-Dimensional Manifold Method (ILDM)

e Uses a dynamical systems approach,

e Does not require imposition of ad hoc partial equilibrium or

steady state assumptions,
e Fast time scale phenomena are systematically equilibrated,
e Slow time scale phenomena are resolved in time,

e N species with L elements and variable e and p gives rise to
a (N — L) 4+ 2-dimensional phase space (same as composition

space),

e Identifies M-dimensional subspaces (manifolds), M < (N — L)+
2, embedded within the (N — L) + 2-dimensional phase space on

which slow time scale events evolve,
— Fast time scale events rapidly move to the manifold,
— Slow time scale events move on the manifold.
e Computation time reduced by factor of ~ 10 for non-trivial com-

bustion problems; manifold gives much better roadmap to find

solution relative to general implicit solution techniques (Norris,

1998)



Simplest Example

dr _ 10 (0) =
dy
_— = — O — 0
g y, y0)=y

e Stable equilibrium at (x,y) = (0,0); stiffness ratio = 10.

o [[DMisx =0

—y(s) = = pm substitute from ODE and manifold

d
—5 = (1)d—j, no longer stiff!

s = Soe_t,

e Projection onto manifold for s,, induces small phase error.



Formulation of General Manifolds

e A well stirred chemically reactive system is modeled by a set of

non-linear ordinary differential equations:

dx_

pri F(x), x(0) = x,,

X . specles concentration; x € RV
e Equilibrium points defined by
X = X, such that F(x.,) = 0.
e Consider a system near equilibrium (the argument can and must
be extended for systems away from equilibrium) with x = x—xX,,.
e Linecarization gives
dx
dt

where Fy 1s a constant Jacobian matrix.

F, - x,

e Schur decompose the Jacobian matrix:

T
Fy = QUQ
: : : )\1 U1 cer UIN . q’{
) ’ ’ 0 A2 PR u2N PR qg
Q= (Ch Q@ CJN), U= 0 . N E Q" = :

0 -+ 0 My q]’l\“]



Formulation of General Manifolds (cont.)

e () is an orthogonal matrix with real Schur vectors g; in its columns.

e U is an upper triangular matrix with eigenvalues of Fyx on its

diagonal, sometimes placed in order of decreasing magnitude.

e The Schur vectors ¢; form an orthonormal basis which spans the
phase space, R,
e We then define M slow time scales.

e We also define L algebraic constraints for L elements

e Next define a non-square matrix W which has in its rows the

Schur vectors associated with the fast time scales:

T
dr+Mm+1

T
A1+ M+2

an

e Letting the fast time scale events equilibrate defines the manifold:

W - F(x) = 0.



Wavelet Adaptive Multilevel Representation (WAMR) Technique
e Summary of standard spatial discretization techniques

— Finite difference-good spatial localization, poor spectral local-

ization, and slow convergence,

— Finite element- good spatial localization, poor spectral local-

ization, and slow convergence,

— Spectral-good spectral localization, poor spatial localization,

but fast convergence.
e Wavelet technique

— See e.g. Vasilyev and Paolucci, “A Fast Adaptive Wavelet Col-
location Algorithm for Multidimensional PDEs,” J. Comp.
Phys., 1997,

— Basis functions have compact support,

— Well-suited for problems with widely disparate spatial scales,

— Good spatial and spectral localization, and fast (spectral) con-

vergence,

— Easy adaptable to steep gradients via adding collocation points

— Spatial adaptation is automatic and dynamic to achieve pre-

scribed error tolerance.



Wavelet Basis Functions
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e Boundary-modified Daubechies autocorrelation functions and in-

terior Daubechies autocorrelation function of order four
e Scaling function
dir(z) = o(2x — k)
e Definition of the wavelet function on the first level
Yro(z) = ¢(2z — 1)
e Definition of the wavelet function on j level

ik (z) = (2w — k)



Algorithm Description

e Approximate initial function using wavelet basis,
J
Pu(r) = 2 uordor(®) + X 3 dinthin(2)
j:

e Discard non-essential wavelets if amplitude below threshold value

(here we look only at P, T', u, and p, species could be included),

Plu(x) = us(v) + u(z)

J

ul(x) = Suopdor(@) + 3 X disthia(e), [diel > e

j:

J
( ) = ; dikjn(T), |djg| <€
e Assign a collocation point to every essential wavelet,
e Establish a neighboring region of potentially essential wavelets,

e Discretize the spatial derivatives; five points used here (related

to order of wavelet family),

e Integrate in time; linearized trapezoidal method (implicit) used

here,

e Repeat



Sample Wavelet Approximation to Arbitrary Function

Arbitrary Function with Variation
on Long and Short Scales
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e Function shown has large and small length scale variation,

e Wavelets concentrated in regions of steep gradients.



Ignition Delay in Premixed Hy-O,

e Consider standard problem of Fedkiw, Merriman, and Osher, J.

Comp. Phys., 1996,
e Shock tube with premixed Hy, Os, and Ar in 2/1/7 molar ratio,
e [nitial inert shock propagating in tube,
e Reaction commences shortly after reflection oft end wall,
e Detonation soon develops,
e Model assumptions

— One-dimensional,
— Mass, momentum, and energy diffusion,
— Nine species, thirty-seven reactions,

— Ideal gases with variable specific heats.



Compressible Reactive Navier-Stokes Equations for H,-O, Problem

dp B
o + B (pu) =0, mass

5 (pu) + % (pu2 + P — 7') =0, momentum

0 e+u—2 +£ e+u—2 +u(P—-71)+q|=0 ene
ot \” 2 oz \"" 9 ) T Trap= Herey

% (pY;) + % (puY; + j;) = wiM;, species

_E. N oY\ Yk
W = Z ajTﬁj exp ( §RT]) Vij kl;[l (?\/[:) , law of mass action

N
Y; .
P = pRT Z , thermal equation of state
i=1 ?
al T RT
e=>Y <hf + . cpi(T)dT — M) , caloric equation of state
=1 o 1
4 Ou . . .
T = g,ua—, Newtonian gas with Stokes’ assumption
x
N
| o (v, 1 ) |
Jji=—p) Dij=— | V= Fick’s law
jgl ]8x (Myzgzlyk/Mk
oT
q=—k— Fourier’s law.
Ox

N =9 species: HQ, 02, H, O, OH, HQOQ, HQO, HOQ, Ar

M = 37 reactions



Operator Splitting Technique

e Equations are of form

%q(m, t) + %f(q(a:, t)) = gla(z,1)).

u2 T
q= (p,pu,p (6+ 5) ,pY;)

e f models convection and diffusion

where

e g models reaction source terms
e Splitting

1. Inert convection diffusion step:

0 0
d

Ga(t) = —Af(a ().

A, is wavelet discretization operator.

2. Reaction source term step:

2 ale,1) = sla(e. 1),
Cailt) = glal).

e Operator splitting with implicit stiff source solution can induce non-

physical wave speeds! (LeVeque and Yee, JCP 1990)



ILDM Implementation in Operator Splitting

e Form of equations in source term step:

0 0
d pU 0
dt | p (e + “;) 0
pYi w; M;
e Fiquations reduce to
ay;, w;M,;
P = Po, U = Uy, € = €y, —

dt 0o

e w; has dependency on p, e, and Y;

e ODEs for Y; can be attacked with manifold methods when man-

ifold with p, e, H, O, Ar parameterization is available.

e In premixed problem, H, O, and Ar element concentrations are

constant, reducing the dimension by three!

e Taking M = 1, and parameterizing by Y,0, we require a K = 3-

dimensional lookup table for Y; = Y;(Yy,0, p, ).

e Full equations integrated until sufficiently close to manifold

e Once on manifold, simple projection used to return to manifold

following convection-diffusion step



Sample ILDM for Hy — O,

e Projection of ILDM in H,O, H>Os plane,

e Adiabatic (e = 525 k.J/kg), isochoric (p = 0.25 kg/m?), element

concentrations of H, O, and Ar constant,
e Complete manifold tabulated in three dimensions: p, e, Yu,0,
e Sowehavee.g. P(p,e,Ymo0),T (p,e,Ymo0),Yu (p,e,Ymo), ...
e Linear interpolation used for points not in table,

e Captures ~ 0.1 us reaction events.

5 x107°

phase space
trajectories

ILDM

H202 mass fraction

O 1 1 1 1 1 1 J
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

H,O mass fraction




Viscous Hy; — O, Ignition Delay with Wavelets and ILDM
ot =195 us, 300 collocation points, 15 wavelet scale levels
e ILDM gives nearly identical results as full chemistry

e WAMR spatial discretization, implicit linear trapezoidal convec-
tion diffusion time stepping, explicit (ILDM)/implicit (non-ILDM)

reaction time stepping

e Viscous shocks, inductions zones, and entropy layers spatially

resolved!
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Viscous Hy; — Oy Ignition Delay with Wavelets and ILDM

ot =195 us

e ILDM gives nearly identical results as full chemistry
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Post Reflection Entropy Layer?: Viscous Wavelet Results

e No significant entropy layer evident on macroscale after shock

reflection when resolved viscous terms considered,

e Inviscid codes with coarse gridding introduce a larger entropy

layer due to numerical diffusion,

e Unless suppressed, unphysically accelerates reaction rate.
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Post Reflection Entropy Layer: Viscous Wavelet Results

e small entropy layer evident on finer scale,
e temperature rise ~ 5 K; dissipates quickly,

e inviscid calculations before adjustment give persistent tempera-

ture rise of ~ 20 K’; reaction acceleration small.
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Viscous Hy; — O, Ignition Delay with Wavelets

Global and Fine Scale Structures

ot = 230 ws, Induction zone length: ~ 470 pum, Viscous shock

thickness: ~ 50 pum (should use smaller ),

e No significant reaction in viscous shock zone.
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Level

Viscous Hy; — Oy Ignition Delay with Wavelets,
Instantaneous Distributions of Collocation Points

ot = 180 s, two-shock structure with consequent collocation

point distribution,

ot = 230 us, one-shock structure with evolved collocation point
distribution.

15 T T T T T
10 I~ - —
T - -
>
) c— —
|
B seceesessesess se sescsesesesene oed
0 ! o ) ! ) L !
0 0.02 0.04 0.06 0.08 0.1 0.12
X (m)
15 T T T T T
10 - _
B ee eceseseseene we seseeses _
0 L I ! I I
0 0.02 0.04 0.06 0.08

0.1 0.12
x (m)



Conclusions

e The WAMR method gives dramatic spatial resolution in viscous
one-dimensional Hs/Os detonations with detailed kinetics; vis-

cous shocks, entropy layers, and induction zones are resolved,

e Preliminary results on well-stirred systems indicate at least a ten-
fold increase in computational efficiency with use of intrinsic low

dimensional manifolds,

e Operator splitting allows straightforward implementation of ILDM

method in solving PDEs.



