Novel Modeling of Hydrogen/Oxygen Detonation

by

Yevgenii Rastigejev¹, Sandeep Singh², Christopher Bowman³, Samuel Paolucci⁴, and Joseph M. Powers⁵

Department of Aerospace and Mechanical Engineering University of Notre Dame

presented at the

AIAA 38th Aerospace Sciences Meeting and Exhibit

Reno, Nevada

10 January 2000

Support: NSF and AFOSR

¹Ph.D. Candidate

²Ph.D. Candidate

 $^{^{3}\}mathsf{Post-Doctoral}$ Research Associate

 $^{{}^{4}}_{\rm Professor}$

⁵Associate Professor

Outline

- Motivation
- Intrinsic Low Dimensional Manifold (ILDM) technique
- Wavelet Adaptive Multilevel Representation (WAMR) technique
- Results for one-dimensional viscous $H_2 O_2$ detonation with detailed kinetics
- Conclusions

Motivation

- Detailed finite rate kinetics critical in reactive fluid mechanics:
 - Candle flames,
 - Atmospheric chemistry,
 - Internal combustion engines,
 - Gas phase reactions in energetic solid combustion.
- Common detailed kinetic models are computationally expensive.
 - -150 hr supercomputer time for calculation of steady, laminar, axisymmetric, methane-air diffusion flame (Smooke)
 - Expense increases with
 - * number of species and reactions modeled (linear effect),
 - * *stiffness*-ratio of slow to fast time scales, (geometric effect).
 - Fluid mechanics time scales: $10^{-5} s$ to $10^1 s$.
 - Reaction time scales: $10^{-11} s$ to $10^{-5} s$.
- Reduced kinetics necessary given current computational resources.
- Adaptive discretization necessary for fine spatial structures.
- Inclusion of *physical* diffusion necessary to capture correct physics and for *numerical* convergence.

Goals

- Implement robust new reduced kinetic method (Intrinsic Low Dimensional Manifold-ILDM) of Maas and Pope (1992)
- Extend ILDM method to systems with time and space dependency, along with variable energy and density
- Extend WAMR technique (Paolucci & Vasilyev) to combustion systems,
- Couple WAMR and ILDM techniques.

Common Reduced Kinetics Strategies

- Fully frozen limit: no reaction allowed, *uninteresting*
- Fully equilibrated limit: commonly used in some problems
 - has value for events in which fluid time scales are slow with respect to reaction time scales,
 - misses events which happen on chemical time scales.
- Simple one and two step models
 - require significant intuition and curve fitting,
 - can give good first order results,
 - are often not robust.
- Partial equilibrium and steady-state assumptions
 - again require intuition,
 - are not robust.
- Sensitivity analysis
 - can remove need to include unimportant reactions,
 - not guaranteed to remove stiffness.

Intrinsic Low-Dimensional Manifold Method (ILDM)

- Uses a dynamical systems approach,
- Does not require imposition of *ad hoc* partial equilibrium or steady state assumptions,
- Fast time scale phenomena are systematically equilibrated,
- Slow time scale phenomena are resolved in time,
- N species with L elements and variable e and ρ gives rise to a (N - L) + 2-dimensional phase space (same as composition space),
- Identifies M-dimensional subspaces (manifolds), M < (N−L)+
 2, embedded within the (N − L) + 2-dimensional phase space on which slow time scale events evolve,
 - Fast time scale events rapidly move to the manifold,
 - Slow time scale events move on the manifold.
- Computation time reduced by factor of ~ 10 for non-trivial combustion problems; manifold gives much better roadmap to find solution relative to general implicit solution techniques (Norris, 1998)

Simplest Example

$$\frac{dx}{dt} = -10x, \qquad x(0) = x_o,$$
$$\frac{dy}{dt} = -y, \qquad y(0) = y_o.$$

- Stable equilibrium at (x, y) = (0, 0); stiffness ratio = 10.
- ILDM is x = 0

• Parameterization of manifold: x(s) = 0; y(s) = s.

 $\frac{dy}{dt} = \frac{dy}{ds} \frac{ds}{dt}, \quad \text{chain rule}$ $-y(s) = \frac{dy}{ds} \frac{ds}{dt}, \quad \text{substitute from ODE and manifold}$ $-s = (1)\frac{ds}{dt}, \quad \text{no longer stiff!}$ $s = s_o e^{-t},$ $x(t) = 0; \quad y(t) = s_o e^{-t}.$

• Projection onto manifold for s_o , induces small phase error.

Formulation of General Manifolds

• A well stirred chemically reactive system is modeled by a set of non-linear ordinary differential equations:

$$\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}), \qquad \mathbf{x}(0) = \mathbf{x}_o,$$

 \mathbf{x} : species concentration; $\mathbf{x} \in \Re^N$

• Equilibrium points defined by

$$\mathbf{x} = \mathbf{x}_{eq}$$
 such that $\mathbf{F}(\mathbf{x}_{eq}) = 0$.

- Consider a system near equilibrium (the argument can and must be extended for systems away from equilibrium) with $\tilde{\mathbf{x}} = \mathbf{x} - \mathbf{x}_{eq}$.
- Linearization gives

$$\frac{d\tilde{\mathbf{x}}}{dt} = \mathbf{F}_{\mathbf{x}} \cdot \tilde{\mathbf{x}},$$

where $\mathbf{F}_{\mathbf{x}}$ is a *constant* Jacobian matrix.

• Schur decompose the Jacobian matrix:

$$\mathbf{F}_{\mathbf{x}} = \mathbf{Q} \cdot \mathbf{U} \cdot \mathbf{Q}^{T}$$

$$\mathbf{Q} = \begin{pmatrix} \vdots & \vdots & & \vdots \\ q_1 & q_2 & \cdots & q_N \\ \vdots & \vdots & & \vdots \end{pmatrix}, \quad \mathbf{U} = \begin{pmatrix} \lambda_1 & u_{12} & \cdots & u_{1N} \\ 0 & \lambda_2 & \cdots & u_{2N} \\ 0 & \cdots & \ddots & & \vdots \\ 0 & \cdots & 0 & \lambda_N \end{pmatrix}, \quad \mathbf{Q}^T = \begin{pmatrix} \cdots & q_1^T & \cdots \\ \cdots & q_2^T & \cdots \\ \vdots & & \\ \cdots & q_N^T & \cdots \end{pmatrix}$$

Formulation of General Manifolds (cont.)

- **Q** is an orthogonal matrix with real Schur vectors q_i in its columns.
- U is an upper triangular matrix with eigenvalues of $\mathbf{F}_{\mathbf{x}}$ on its diagonal, sometimes placed in order of decreasing magnitude.
- The Schur vectors q_i form an orthonormal basis which spans the phase space, \Re^N .
- We then define M slow time scales.
- \bullet We also define L algebraic constraints for L elements
- Next define a non-square matrix **W** which has in its rows the Schur vectors associated with the fast time scales:

$$\mathbf{W} = \begin{pmatrix} \cdots & \cdots & q_{L+M+1}^T & \cdots & \cdots \\ \cdots & \cdots & q_{L+M+2}^T & \cdots & \cdots \\ & & \vdots & & \\ \cdots & \cdots & q_N^T & \cdots & \cdots \end{pmatrix}$$

• Letting the fast time scale events equilibrate defines the manifold:

$$\mathbf{W} \cdot \mathbf{F}(\mathbf{x}) = 0.$$

Wavelet Adaptive Multilevel Representation (WAMR) Technique

- Summary of standard spatial discretization techniques
 - Finite difference-good spatial localization, poor spectral localization, and slow convergence,
 - Finite element- good spatial localization, poor spectral localization, and slow convergence,
 - Spectral–good spectral localization, poor spatial localization, but fast convergence.
- Wavelet technique
 - See e.g. Vasilyev and Paolucci, "A Fast Adaptive Wavelet Collocation Algorithm for Multidimensional PDEs," J. Comp. Phys., 1997,
 - Basis functions have compact support,
 - Well-suited for problems with widely disparate spatial scales,
 - Good spatial and spectral localization, and fast (spectral) convergence,
 - Easy adaptable to steep gradients via adding collocation points,
 - Spatial adaptation is automatic and dynamic to achieve prescribed error tolerance.

Wavelet Basis Functions

- Boundary-modified Daubechies autocorrelation functions and interior Daubechies autocorrelation function of order four
- Scaling function

$$\phi_{j,k}(x) = \phi(2^j x - k)$$

• Definition of the wavelet function on the first level

$$\psi_{1,0}(x) = \phi(2x - 1)$$

 \bullet Definition of the wavelet function on j level

$$\psi_{j,k+1}(x) = \psi(2^{j-1}x - k)$$

Algorithm Description

• Approximate initial function using wavelet basis,

$$\mathbf{P}^{J}u(x) = \sum_{k} u_{0,k}\phi_{0,k}(x) + \sum_{j=1}^{J} \sum_{k} d_{j,k}\psi_{j,k}(x)$$

• Discard non-essential wavelets if amplitude below threshold value (here we look only at P, T, u, and ρ , species could be included),

$$\mathbf{P}^{J}u(x) = u_{\geq}^{J}(x) + u_{<}^{J}(x)$$
$$u_{\geq}^{J}(x) = \sum_{k} u_{0,k}\phi_{0,k}(x) + \sum_{j=1}^{J}\sum_{k} d_{j,k}\psi_{j,k}(x), |d_{j,k}| \ge \epsilon$$
$$u_{<}^{J}(x) = \sum_{j=1}^{J}\sum_{k} d_{j,k}\psi_{j,k}(x), |d_{j,k}| < \epsilon$$

- Assign a collocation point to every essential wavelet,
- Establish a neighboring region of potentially essential wavelets,
- Discretize the spatial derivatives; five points used here (related to order of wavelet family),
- Integrate in time; linearized trapezoidal method (implicit) used here,
- Repeat

- Function shown has large and small length scale variation,
- Wavelets concentrated in regions of steep gradients.

Ignition Delay in Premixed H_2 - O_2

- Consider standard problem of Fedkiw, Merriman, and Osher, J.
 Comp. Phys., 1996,
- Shock tube with premixed H_2 , O_2 , and Ar in 2/1/7 molar ratio,
- Initial inert shock propagating in tube,
- Reaction commences shortly after reflection off end wall,
- Detonation soon develops,
- Model assumptions
 - One-dimensional,
 - Mass, momentum, and energy diffusion,
 - Nine species, thirty-seven reactions,
 - Ideal gases with variable specific heats.

Compressible Reactive Navier-Stokes Equations for H_2 - O_2 Problem

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left(\rho u \right) = 0, \quad \text{mass}$$

$$\frac{\partial}{\partial t}(\rho u) + \frac{\partial}{\partial x}\left(\rho u^2 + P - \tau\right) = 0, \qquad \text{momentum}$$

 $\frac{\partial}{\partial t} \left(\rho \left(e + \frac{u^2}{2} \right) \right) + \frac{\partial}{\partial x} \left(\rho u \left(e + \frac{u^2}{2} \right) + u \left(P - \tau \right) + q \right) = 0, \quad \text{energy}$

$$\frac{\partial}{\partial t} \left(\rho Y_i \right) + \frac{\partial}{\partial x} \left(\rho u Y_i + j_i \right) = \dot{\omega}_i M_i, \qquad \text{species}$$

$$\dot{\omega}_i = \sum_{j=1}^M a_j T^{\beta_j} \exp\left(\frac{-E_j}{\Re T}\right) \nu_{ij} \prod_{k=1}^N \left(\frac{\rho Y_k}{M_k}\right)^{\nu_{kj}}, \qquad \text{law of mass action}$$

$$P = \rho \Re T \sum_{i=1}^{N} \frac{Y_i}{M_i}$$
, thermal equation of state

 $e = \sum_{i=1}^{N} Y_i \left(h_i^o + \int_{T_o}^{T} c_{pi}(\hat{T}) d\hat{T} - \frac{\Re T}{M_i} \right), \qquad \text{caloric equation of state}$

$$au = \frac{4}{3}\mu \frac{\partial u}{\partial x}$$
, Newtonian gas with Stokes' assumption

$$j_i = -\rho \sum_{j=1}^N \mathcal{D}_{ij} \frac{\partial}{\partial x} \left(\frac{Y_j}{M_j} \frac{1}{\sum_{k=1}^N Y_k/M_k} \right), \qquad \text{Fick's law}$$

$$q = -k \frac{\partial T}{\partial x}$$
 Fourier's law.

N = 9 species: $H_2, O_2, H, O, OH, H_2O_2, H_2O, HO_2, Ar$

M = 37 reactions

Operator Splitting Technique

• Equations are of form

$$\frac{\partial}{\partial t}\mathbf{q}(x,t) + \frac{\partial}{\partial x}\mathbf{f}(\mathbf{q}(x,t)) = \mathbf{g}(\mathbf{q}(x,t)).$$

where

$$\mathbf{q} = \left(\rho, \rho u, \rho \left(e + \frac{u^2}{2}\right), \rho Y_i\right)^T$$

- $\bullet~{\bf f}$ models convection and diffusion
- $\bullet~{\bf g}$ models reaction source terms
- Splitting
 - 1. Inert convection diffusion step:

$$\frac{\partial}{\partial t}\mathbf{q}(x,t) + \frac{\partial}{\partial x}\mathbf{f}(\mathbf{q}(x,t)) = 0,$$
$$\frac{d}{dt}\mathbf{q}_i(t) = -\Delta_x\mathbf{f}(\mathbf{q}_i(t)).$$

 Δ_x is wavelet discretization operator.

2. Reaction source term step:

$$\frac{\partial}{\partial t}\mathbf{q}(x,t) = \mathbf{g}(\mathbf{q}(x,t)),$$
$$\frac{d}{dt}\mathbf{q}_i(t) = \mathbf{g}(\mathbf{q}_i(t)).$$

• Operator splitting with implicit stiff source solution can induce nonphysical wave speeds! (LeVeque and Yee, *JCP* 1990)

ILDM Implementation in Operator Splitting

• Form of equations in source term step:

$$\frac{d}{dt} \begin{pmatrix} \rho \\ \rho u \\ \rho \left(e + \frac{u^2}{2} \right) \\ \rho Y_i \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \dot{\omega}_i M_i \end{pmatrix}$$

• Equations reduce to

$$\rho = \rho_o, \qquad u = u_o, \qquad e = e_o, \qquad \frac{dY_i}{dt} = \frac{\dot{\omega}_i M_i}{\rho_o}.$$

- $\dot{\omega}_i$ has dependency on ρ , e, and Y_i
- ODEs for Y_i can be attacked with manifold methods when manifold with ρ , e, H, O, Ar parameterization is available.
- In premixed problem, *H*, *O*, and *Ar* element concentrations are constant, reducing the dimension by three!
- Taking M = 1, and parameterizing by Y_{H_2O} , we require a K = 3dimensional lookup table for $Y_i = Y_i(Y_{H_2O}, \rho, e)$.
- Full equations integrated until sufficiently close to manifold
- Once on manifold, simple projection used to return to manifold following convection-diffusion step

Sample ILDM for $H_2 - O_2$

- Projection of ILDM in H_2O , H_2O_2 plane,
- Adiabatic (e = 525 kJ/kg), isochoric $(\rho = 0.25 kg/m^3)$, element concentrations of H, O, and Ar constant,
- Complete manifold tabulated in three dimensions: ρ, e, Y_{H_2O} ,
- So we have e.g. $P(\rho, e, Y_{H_2O}), T(\rho, e, Y_{H_2O}), Y_H(\rho, e, Y_{H_2O}), \dots$
- Linear interpolation used for points not in table,
- Captures $\sim 0.1 \ \mu s$ reaction events.

Viscous $H_2 - O_2$ Ignition Delay with Wavelets and ILDM

- $t = 195 \ \mu s$, 300 collocation points, 15 wavelet scale levels
- ILDM gives nearly identical results as full chemistry
- WAMR spatial discretization, implicit linear trapezoidal convection diffusion time stepping, explicit (ILDM)/implicit (non-ILDM) reaction time stepping
- Viscous shocks, inductions zones, and entropy layers spatially resolved!

Viscous $H_2 - O_2$ Ignition Delay with Wavelets and ILDM

- $t = 195 \ \mu s$
- ILDM gives nearly identical results as full chemistry

Post Reflection Entropy Layer?: Viscous Wavelet Results

- No significant entropy layer evident on macroscale after shock reflection when resolved viscous terms considered,
- Inviscid codes with coarse gridding introduce a larger entropy layer due to numerical diffusion,
- Unless suppressed, unphysically accelerates reaction rate.

Post Reflection Entropy Layer: Viscous Wavelet Results

- small entropy layer evident on finer scale,
- temperature rise ~ 5 K; dissipates quickly,
- inviscid calculations before adjustment give persistent temperature rise of $\sim 20 \ K$; reaction acceleration small.

Viscous $H_2 - O_2$ Ignition Delay with Wavelets Global and Fine Scale Structures

- $t = 230 \ \mu s$, Induction zone length: ~ 470 μm , Viscous shock thickness: ~ 50 μm (should use smaller μ),
- No significant reaction in viscous shock zone.

Viscous $H_2 - O_2$ Ignition Delay with Wavelets, Instantaneous Distributions of Collocation Points

- $t = 180 \ \mu s$, two-shock structure with consequent collocation point distribution,
- $t = 230 \ \mu s$, one-shock structure with evolved collocation point distribution.

Conclusions

- The WAMR method gives dramatic spatial resolution in viscous one-dimensional H_2/O_2 detonations with detailed kinetics; viscous shocks, entropy layers, and induction zones are resolved,
- Preliminary results on well-stirred systems indicate at least a tenfold increase in computational efficiency with use of intrinsic low dimensional manifolds,
- Operator splitting allows straightforward implementation of ILDM method in solving PDEs.