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Taxonomy

We consider Reduced Manifolds for realistic spatially homogeneous gas
phase kinetic systems.

Invariant Manifolds (IMs) are sets of points which are invariant
under the action of an underlying dynamic system.

Any trajectory of a dynamic system is an IM.

IMs may be locally or globally fast or slow, attracting or repelling.

Slow or fast does not imply attracting or repelling and vice versa.

The fast/slow and attracting/repelling nature of Canonical
Invariant Manifolds (CIMs) constructed by connecting equilibria
to determine heteroclinic orbits has been discussed by Powers,
Paolucci, Mengers, Al-Khateeb, J. Math. Chem., 2015.

A global Slow Attracting Canonical Invariant Manifold (SACIM)
may represent the optimal reduction potentially for enabling
enhanced accuracy and efficiency in multiscale problems.
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On the construction of SIMs

It is relatively easy to construct CIMs by numerical integration.

Many CIMs exist, but we are only interested in those that connect
to physical equilibrium.

It is desirable to identify those CIMs to which

dynamics are restricted to those which are slow, and
neighboring trajectories are rapidly attracted.

Identification of these SACIMs is difficult.

It is common in the literature to focus on Slow Invariant

Manifolds (SIMs).

As such, we will focus from hereon on SIMs, though we recognize a
SACIM is more desirable.
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On the construction of SIMs, cont.

Ginoux, et al. have proposed an
appealing SIM construction
method based on differential
geometry concepts such as local
curvature and torsion of
trajectories to identify SIMs.

Int. J. Bifurcation Chaos,
2006, 2008

Qual. Theory Dyn. Syst.,
2013, 2014

We will consider this method and
compare its results to other
methods.
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Theoretical framework for spatially homogeneous

combustion within a closed volume

dx

dt
= v(x), x(0) = xo, x,xo, f ∈ R

N .

x, a position in phase space, represents a set of N specific mole
numbers, assuming all linear constraints have been removed.

v(x), a velocity in phase space, embodies the law of mass action.

v(x) = 0 defines multiple equilibria within R
N .

v(x) is such that a unique stable equilibrium exists for physically
realizable values of x; the eigenvalues of the Jacobian

J =
∂v

∂z
,

are guaranteed real and negative at such an equilibrium.

a(x) = ∂v
∂x

dx
dt

= J · v is an acceleration in phase space.
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SACIM construction strategy: heteroclinic orbit

connection

Davis and Skodje suggested a
CIM construction strategy.

It employs numerical
integration from a saddle to
the sink.

This guarantees a CIM.

It may be a SACIM.

SA
CI
M

Saddle

Sink

6th IWMRRF – Princeton Manifolds and Trajectory Curvature 12 July 2017 6 / 19



Failure of SACIM construction strategy

It may not be a SACIM.

The CIM will be attracting in
the neighborhood of each
equilibrium.

The CIM need not be
attractive away from either
equilibrium.

CIM

Saddle

Sink

6th IWMRRF – Princeton Manifolds and Trajectory Curvature 12 July 2017 7 / 19



Sketch of a volume locally traversing a nearby CIM

Saddle

Sink
CIM

The local differential volume 1) translates, 2) stretches, and 3) rotates.
Its magnitude can decrease as it travels, but elements can still be repelled
from the CIM. All trajectories are ultimately attracted to the sink.

Based on rotation rate, one may determine whether or not the CIM is a
SACIM; see Powers, et al. 2015.
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Alternate SIM construction strategy of Ginoux, et al.

Each trajectory possesses generalized curvature.

For 2D trajectories, this is the ordinary curvature, κ:

κ =
||a× v||

||v||3

For 2D, Zero-Curvature Manifold (ZCM) when κ = 0.

For 3D trajectories, one has the torsion τ :

τ = −
(v × a) · da

dt

κ2||v||6

For 3D, ZCM when τ = 0.

In general, the ZCM is given by the condition

det
(

ẋ, ẍ, . . . ,
(n)
x

)

= 0.

Claim: invariance of the ZCM established by the Darboux
Theorem, provided dJ/dt = 0.
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2D SIM construction strategy of Ginoux, et al.

Trajectory curvature κ given by:

κ =
||a× v||

||v||3

The ZCM is a set of points that have trajectories passing through
it with velocity parallel to acceleration:

ZCM : a× v = 0

The ZCM is not a trajectory; trajectories passing through the
ZCM possess zero curvature on the ZCM.

The ZCM itself has non-zero curvature.

It is claimed, Ginoux 2006, that the ZCM identifies the SIM.

It is better stated that the ZCM approximates the SIM, and that
the ZCM is not an IM.
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A later cavaet from Ginoux, 2013

This extension will not be analyzed here.
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The Davis-Skodje system

A nonlinear system with similar properties to reaction-based systems:

dx

dt
= −x, x(0) = x0,

dy

dt
= −γy +

(γ − 1)x+ γx2

(1 + x)2
, y(0) = y0.

Exact solution:

x(t) = x0e
−t,

y(t) =
x0e

−t

1 + x0e−t
+

(

y0 −
x0

1 + x0

)

e−γt.

Exact solution in the phase plane:

y(x) =
x

1 + x
+

(

y0 −
x0

1 + x0

)(
x

x0

)γ

.
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Davis-Skodje, cont.

For large stiffness, γ ≫ 1, the SIM is approached from arbitrary initial
conditions:

ySIM =
x

1 + x
.

Exact expressions exist for J and a:

J =

(

−1 0
γ−1+(γ+1)x

(1+x)3
−γ

)

,

a =

(
x

γ2y −
x(γ2(x+1)2+x−1)

(x+1)3

)

.

Eigenvalues of J are λ1 = −1, λ2 = −γ.
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Davis-Skodje, cont.

dJ

dt
=

(

0 0

−2(γ+(γ+1)x−2)ẋ
(x+1)4 0

)

=

(

0 0
2x(γ+γx+x−2)

(x+1)4 0

)

6= 0.

The condition for the Darboux Theorem required for an IM is not met.
So there is no guarantee that a ZCM is an IM.
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ILDM for the Davis-Skodje system

The Maas-Pope Intrinsic Low-Dimensional Manifold (ILDM) is found
by projecting the system onto a basis from fast and slow modes of J
and equilibrating the equation associated for the fast time scale. For the
Davis-Skodje system, this yields the ILDM:

yILDM =
x

x+ 1
︸ ︷︷ ︸

ySIM

+
2x2

γ(γ − 1)(1 + x)3
.

Obviously, yILDM is not a SIM, but approaches the SIM as γ → ∞.
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ZCM for the Davis-Skodje system

The ZCM is found by enforcing a×v = 0. For the Davis-Skodje system,
this yields the ZCM:

yZCM =
x

x+ 1
︸ ︷︷ ︸

ySIM

+
2x2

γ(γ − 1)(1 + x)3
.

For the Davis-Skodje system, the ZCM is the ILDM, and is not the SIM.
The ZCM is not a solution trajectory, and it is not an IM. As does the
ILDM, the ZCM approaches the SIM as γ → ∞.
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Davis-Skodje system for γ = 3

Consider x = 1.

Here dx/dt = −1,
dy/dt = −1/4, so dy/dx = 1/4.

Direct differentiation of the
SIM gives
dySIM/dx|x=1 = 1/4.

Here yZCM = 13/24, and on
the ZCM at x = 1,
dy/dx = 3/8

But at x = 1,
dyZCM/dx|x=1 = 13/48.

6th IWMRRF – Princeton Manifolds and Trajectory Curvature 12 July 2017 17 / 19



Conclusions

The ZCM has non-zero curvature.

Trajectories that pass through the ZCM do so with their velocity
parallel to their acceleration, thus rendering the trajectories to
have no curvature at the ZCM.

The ZCM is an ILDM.

The ZCM is not a SIM.

The ZCM and ILDM better approximate the SIM as stiffness
increases.

Later extensions to the theory of ZCMs remain to be analyzed for
the Davis-Skodje system.
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Conclusions

As shown elsewhere,

A SACIM represents a “gold standard” for a reduced kinetics
model for a spatially homogeneous reactive system.

SACIMs can be identified in physically-based gas phase kinetics
systems.

SACIM diagnosis is arduous for small systems, unclear for systems
of higher dimension than three, and presently impractical for
engineering combustion applications.

Relevant to the discussion here,

ZCMs for large practical systems of realistic kinetics have not yet
been identified.

Such a task is likely arduous as well.
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