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Motivation

We investigate numerical methods to accurately simulate high Mach
number flow with shocks and exothermic reaction:

Shock-capturing: (WENO, Roe, etc), less than first order
convergence,
Shock-fitting: high accuracy and potential high order convergence;
limited to simple topologies and algorithmically complicated,
Wavelet adaptive methods: high accuracy, appropriate for
multiscale, algorithmically complicated,
Implicit shock-tracking: high accuracy and potential high order
convergence, finite element based.

We find, relative to WENO, implicit shock tracking yields remarkable
improvement in accuracy on a standard verification problem in oblique
detonation.
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WENO shock-capturing: looks good, but converges at
< O(∆x)

1,986 journal articles on
WENO (Shu, et al, 1996),
cited 35,489 times!
WENO shock-capturing
“looks” better than
Lax-Wendroff, etc.
shock-capturing in the “picture
norm”.
But, WENO converges at
O(∆x1−1/(r+1)), where r is the
rate of convergence for smooth
problems.
Our r = 5 WENO converges at
O(∆x5/6) for shocks.

Henrick, Aslam, Powers, Journal of
Computational Physics, 2005.
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WENO with shock fitting: looks good and converges at
O(∆x5)

Algorithmically
complicated shock-fitting
requires exact solution of
shock jump conditions and
mapping of the domain to
shock-attached coordinates.
It enables high accuracy
and convergence rates.
Our r = 5 WENO and
shock-fitting converges at
O(∆x4.907) for a problem
with shock and reaction.

Henrick, Aslam, Powers, Journal of
Computational Physics, 2006.
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Pseudo-spectral with shock fitting: looks good and
converges spectrally!

Shock-fitting may be coupled
with a pseudo-spectral method
for very high accuracy and
convergence rates.
Solution here for an inert blunt
body re-entry problem at
M = 3.5.
Algorithmically complicated!
Karhunen-Loéve-based
reduced-order model for shape
optimization

-

-

Brooks and Powers, Journal of Com-
putational Physics, 2004.
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Physical diffusion can eliminate carbuncle instability, but
must resolve thin zones

Roe-based shock-capturing
may induce non-physical
carbuncle instabilities for Euler
equation solution.
Inclusion of physical viscosity
in Navier-Stokes solution
stabilizes the flow.
Solution here from
OpenFOAM for an inert blunt
body re-entry problem at
M = 5.73.
Resolution of thin zones is
expensive!
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Powers, Bruns, Jemcov, AIAA-
2015-0579, 2015.
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Adaptive wavelet method can capture viscous shock and
detailed kinetics reaction

Wavelet basis can efficiently
capture multiscale signals.
Solutions must be continuous,
so shocks require viscosity.
Paolucci, Powers, et al., 2001,
initiated this method for
realistic combustion flows with
detailed kinetics.
Nonlinear chaotic dynamics
resolved.
Multidimensional viscous
detonations in H2 − air
resolved.
Algorithmically complicated!

Romick, Aslam, Powers, Jour-
nal of Fluid Mechanics; Romick,
Ph.D. Dissertation, 2015.
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Implicit shock tracking: a relatively new method

The new method of implicit shock tracking is a competitive and
often highly advantageous method, as will be described shortly.
To quantify its advantage, we will test it against the widely used
WENO shock-capturing method on a benchmark verification
problem in two-dimensional steady detonation.
Powers, J. M., and Aslam, T. D., 2006, “Exact Solution for
Multidimensional Compressible Reactive Flow for Verifying
Numerical Algorithms,” AIAA Journal, 44(2): 337-344.
We develop this useful solution next.
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Partial review of oblique detonation

Samaras, D. G., “Gas Dynamic Treatment of Exothermic and Endothermic
Discontinuities,” Canadian Journal of Research A, Vol. 26, No. 1, 1948, pp. 1-21.
Gross, R. A., “Oblique Detonation Waves,” AIAA Journal, Vol. 1, No. 5, 1963,
pp. 1225-1227.
Pratt, D. T., Humphrey, J. W., and Glenn, D. E., “Morphology of Standing Oblique
Detonation Waves,” Journal of Propulsion and Power, Vol. 7, No. 5, 1991,
pp. 837-645.
Lee, R. S., “A Unified Analysis of Supersonic Nonequilibrium Flow over a Wedge: I.
Vibrational Nonequilibrium,” AIAA Journal, Vol. 4, No. 1, 1966, pp. 30-37.
Powers, J. M., and Stewart, D. S., “Approximate Solutions for Oblique Detonations in
the Hypersonic Limit,” AIAA Journal, Vol. 30, No. 3, 1992, pp. 726-736.
Grismer, M. J., and Powers, J. M., “Comparisons of Numerical Oblique Detonation
Solutions with an Asymptotic Benchmark,” AIAA Journal, Vol. 30, No. 12, 1992,
pp. 2985-2987.
Powers, J. M., and Gonthier, K. A., “Reaction Zone Structures for Strong, Weak
Overdriven, and Weak Underdriven Oblique Detonations,” Physics of Fluids A,
Vol. 4, No. 9, 1992, pp. 2082-2089.
Grismer, M. J., and Powers, J. M., “Numerical Predictions of Oblique Detonation
Stability Boundaries,” Shock Waves, Vol. 6, No. 3, 1996, pp. 147-156.
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Oblique detonation schematic

Straight shock.
Curved wedge.
Orthogonal coordinate system
aligned with shock.
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Powers and Aslam, AIAA Journal,
2006.
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Model: reactive Euler equations

two-dimensional,
steady,
inviscid,
irrotational,
one-step kinetics with zero activation energy,
calorically perfect ideal gases with identical molecular masses and
specific heats
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Model: reactive Euler PDEs

∂

∂X
(ρU) +

∂
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(ρV λ) = αρ(1− λ)H(T − Ti),

e =
1

γ − 1

p

ρ
− λq,

p = ρRT.
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Model reductions: PDEs→ODEs

Assume no Y variation, so

d

dX
(ρU) = 0,

d

dX

(
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Model reductions: ODEs→DAEs

ρU = ρ1u1 sinβ,

ρU2 + p = ρ1u
2
1 sin2 β + p1,

V = u1 cosβ,
γ

γ − 1

p

ρ
− λq +

1

2

(
U2 + u2

1 cos2 β
)

=
γ

γ − 1

p1

ρ1
+

1

2
u2

1,

dλ

dX
= α

1− λ
U

H(T − Ti).

ZND reaction zone structure ODE supplemented with ex-
tended Rankine-Hugoniot algebraic conditions.
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Model reductions: inversion of algebraic relations

withM1 ≡M1 sinβ,

ρ(λ) =
ρ1(γ + 1)M2

1

1 + γM2
1 ±

√
(1 + γM2

1)
2 − (γ + 1)M2
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(
2 + γ−1

γ
2λq
RT1
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ρ1u1 sinβ
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2
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− 1
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T (λ) =
p1

ρ(λ)R
+
ρ21u

2
1 sin

2 β

ρ(λ)R

(
1

ρ1
− 1

ρ(λ)

)
,

q ≤ γRT1(M2
1 − 1)2

2(γ2 − 1)M2
1

, CJ limitation.

+ shocked; − unshocked. Take the shocked branch.
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Reaction zone structure solution

dλ
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.
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Parametric values

Independent Parameter Units Value
R J/kg/K 287

α 1/s 1000

β rad π/4

γ - 6/5

T1 K 300

M1 - 3

ρ1 kg/m3 1

q J/kg 300000

Ti K 131300/363
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Reaction zone structure normal to shock
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Exact solution: streamlines

Curved streamlines identical to
wedge contour.
Streamline curvature
approaches zero as reaction
completes.
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Powers and Aslam, AIAA Journal,
2006.
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Reaction zone structure normal to shock
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Verification of WENO shock capturing

Algorithm of Xu, Aslam, and Stewart, 1997, CTM.
Uniform Cartesian grid.
Embedded internal boundary with level set representation.
Nominally fifth order weighted essentially non-oscillatory (WENO)
discretization.
Non-decomposition based Lax-Friedrichs solver.
Third order Runge-Kutta time integration.
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Exact versus WENO solution

256× 256 uniform numerical
grid.
good agreement in picture
norm.
numerical solution stable. 0.0 0.5 1.0 1.5
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Powers and Aslam, AIAA Journal,
2006.
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Iterative convergence to steady state: various grids

Coarse grids relax quickly; fine
grids relax slowly.
All grids iteratively converge
to steady state.
Iterative convergence is
distinct from grid convergence.
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Grid convergence

Convergence rate: O
(
∆x0.779

)
.

Both shock capturing and
embedded boundary induce
the low convergence rate. 0.01

0.1

1

0.001 0.01 0.1
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Powers and Aslam, AIAA Journal,
2006.
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Conclusions

Modeling flows with thin zones and surfaces of discontinuity is
challenging.
Most common shock-capturing methods converge at less than first
order.
Heroic measures are often needed to achieve high order convergence
Implicit shock tracking......
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High-order implicit tracking: reacting inviscid flow

Original mesh: 100 triangular elements (unstructured)
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Reacting inviscid flow: density (ρ)

p = q = 1 p = q = 2 p = q = 3

p: polynomial degree of solution
q: polynomial degree of mesh
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Reacting inviscid flow: reaction progress (λ)

p = q = 1 p = q = 2 p = q = 3

p: polynomial degree of solution
q: polynomial degree of mesh
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Isolines of density indicate excellent agreement with
analytical solution on coarse (100 element) mesh for p > 1

Analytical ( )
p = 1 ( )
p = 2 ( )
p = 3 ( )
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Implicit shock tracking recovers optimal O(hp+1)
convergence rates; compares favorably to WENO
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Implicit shock tracking

Goal: Align element faces with (unknown) discontinuities to perfectly
capture them and approximate smooth regions to high-order

DG discretization: inter-element jumps, high-order
Discontinuity-aligned mesh is the solution of an optimization
problem constrained by the discrete PDE =⇒ implicit tracking
Simultaneously converge solution and mesh to ensure solution of
PDE never required on non-aligned mesh
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Discontinuous Galerkin discretization of conservation law

Inviscid conservation law:

∇ · F (U) = 0 in Ω

Test Vh,p′ and trial Vh,p spaces, where h is the mesh size and p/p′ is the
polynomial degree, to define the finite-dimensional DG residual:

rKh,p′(Uh,p) :=

∫
∂K

ψ+
h,p′ · H(U+

h,p, U
−
h,p, n) dS −

∫
K
F (Uh,p) : ∇ψh,p′ dV

Introduce basis for polynomial spaces to obtain discrete residuals

r(u,x) (p′ = p), R(u,x) (p′ = p+ 1),

where u is the discrete state vector and x are the coordinates of the mesh
nodes. The “standard” DG equations are: r(u,x) = 0.
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Implicit shock tracking: constrained optimization

We formulate the problem of tracking discontinuities with the mesh as
the solution of an optimization problem constrained by the discrete PDE
(DG discretization)

minimize
u,x

f(u,x)

subject to r(u,x) = 0.

We propose an objective function that balances the tracking objective
with maintaining a high-quality mesh

f(u,x) =
1

2
R(u,x)TR(u,x) +

κ2

2
Rmsh(x)TRmsh(x).
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Implicit shock tracking: SQP solver

Define z = (u,x) and use interchangeably. To solve the optimization
problem, we define a sequence {zk} updated as

zk+1 = zk + αk∆zk.

The step direction ∆zk is defined as the solution of the quadratic program
(QP) approximation of the tracking problem centered at zk

minimize
∆z∈RNz

gz(zk)T∆z +
1

2
∆zTB(zk, λ̂(zk))∆z

subject to r(zk) + Jz(zk)∆z = 0,

where

gz(z) =
∂f

∂z
(z)T , Jz(z) =

∂r

∂z
(z), Bz(z,λ) ≈ ∂2L

∂z∂z
(z,λ),

L(z,λ) = f(z)− λTr(z), λ̂(z) =
∂r

∂u
(z)−T

∂f

∂u
(z)T .
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Practical considerations: element collapse

Despite measures to keep mesh well-conditioned, best option may be
to remove element from the mesh: tag elements for removal based on
volume, collapse shortest edge, trivial DG solution transfer

Only meshing operation required by implicit shock tracking
Simplices: arbitrary dimensions, arbitrary polynomial degree
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Linear advection, straight shock

p = 0 space for solution, q = 1 space for mesh
L1 error = 3.84× 10−11
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Newton-like convergence when solution lies in DG space

Linear advection with straight shock
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Linear advection, trigonometric shock

p = 0 space for solution, q = 2 space for mesh
L1 error = 1.15× 10−3
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Linear advection, trigonometric shock, 3D
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Inviscid Burgers’ equation: space-time formulation

p = 0 space for solution, q = 3 space for mesh
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Temporal snapshots show discontinuity perfectly
represented, smooth solution well-approximated elsewhere
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Temporal snapshots of inviscid Burgers’ equation from p = 4
implicit tracking simulation
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Supersonic flow past NACA0012 airfoil (M = 1.5)

Initialization p = 1 tracking
eH = 1.30× 10−3

p = 2 tracking
eH = 6.73× 10−5
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Spatial slices show both discontinuities are tracked and
solution well-approximated elsewhere
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Spatial slice of supersonic flow past NACA0012 airfoil (M = 1.5) from
p = 3 implicit tracking simulation
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High-order, implicit shock tracking

Primary benefit: highly accurate solutions on coarse meshes,
recover optimal convergence rates
Traditional barrier to tracking (explicitly meshing unknown
discontinuity surface) replaced with solving constrained
optimization problem
Future extensions: 3D, viscous, time-dependent, model
reduction, hypersonics
Zahr, Shi, Persson, Journal of Computational Physics, 2020.
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Implicit shock tracking for hypersonics applications

Strong local features: shock waves and contact discontinuities
Improved solver robustness (time-stepping, vanishing viscosity)

Viscous effects: thin boundary layer, critical to predict heating
Extension to viscous problems straightforward
Expect r-adaptivity near boundary layer to improve approximation

Interacting features: shock/shock and shock/boundary layer
Handled by optimization formulation and element collapse

Unsteady: prediction of combustion stability
Slab-based space-time formulation (moving features)
Method-of-lines-based formulation (stationary features)

Multi-scale/physics: turbulence, ablation, conjugate heat transfer
Clip objective function to avoid tracking all turbulent features
Integrate in partitioned multiphysics setting
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Reduction of parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for advection-
dominated features (slowly decay Kolmogorov n-width)

Proposed solution

apply parameter-dependent domain mapping to align features
use linear subspace in reference domain to reduce dimension
push forward to physical domain
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Numerical experiment: parametrized linear advection

The governing parametrized conservation law is

∇ · (βµU) + σµU = fµ in Ω := (0, 1)2

U = Ûµ on Γi := {x ∈ ∂Ω | βµ · n < 0}

µ1 : shock angle (βµ)
µ2 : magnitude of source term (σµ)
µ3 : magnitude of boundary condition (Ûµ)
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Optimization-based alignment of discontinuities in
reference domain (similar to implicit shock tracking)

Snapshot 1

Reference domain Physical domain

The blue line indicates the true orientation of the discontinuity in the physical domain
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Optimization-based alignment of discontinuities in
reference domain (similar to implicit shock tracking)

Snapshot 5

Reference domain Physical domain

The blue line indicates the true orientation of the discontinuity in the physical domain
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Optimization-based alignment of discontinuities in
reference domain (similar to implicit shock tracking)

Snapshot 6

Reference domain Physical domain

The blue line indicates the true orientation of the discontinuity in the physical domain
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With feature alignment, POD modes do not have to
resolve moving discontinuity since it is (mostly) fixed

Mode 1 Mode 2 Mode 3
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Without feature alignment, POD modes must resolve
moving discontinuity, which leads to slowly decaying
Kolmogorov n-width

Mode 1 Mode 2 Mode 3
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Alignment framework leads to reduction in error for
discontinuities not encountered during training

Test point 96 (discontinuity not in training)

HDM ROM (aligned) ROM (non-aligned)

The blue line indicates the true orientation of the discontinuity in the physical domain
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Alignment framework leads to reduction in error for
discontinuities not encountered during training

Testing set Maximum error Mean error
discontinuity in training 0.92% 0.45%

discontinuity not in training 26.5% 19.5%

Classical minimum-residual model reduction

Testing set Maximum error Mean error
discontinuity in training 2.61% 1.22%

discontinuity not in training 4.18% 3.31%

Minimum-residual model reduction with feature alignment

Parameters: 12 training, 125 testing
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Appendix
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Implicit shock tracking: SQP solver

The solution of the QP leads to the following linear system Buu(zk, λ̂(zk)) Bux(zk, λ̂(zk)) Ju(zk)T

Bux(zk, λ̂(zk))T Bxx(zk, λ̂(zk)) Jx(zk)T

Ju(zk) Jx(zk) 0

∆uk

∆xk

ηk

 = −

gu(zk)
gx(zk)
r(zk)

 ,
where

g�(z) =
∂f

∂�
(z)T , J�(z) =

∂r

∂�
(z),

the approximate Hessian of the Lagrangian is partitioned as

B�4(z,λ) ≈ ∂2L
∂�∂4

(z,λ),

and ηk are the Lagrange multipliers of the QP.
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SQP solver: Levenberg-Marquardt Hessian approximation

The proposed objective function takes the form of a residual norm

f(z) =
1

2
‖F (z)‖22 , F (z) =

[
R(z)

κRmsh(x)

]
and therefore the Hessian of the Lagrangian has the special structure

H(z,λ) =
∂F

∂z
(z)T

∂F

∂z
(z) + F i(z)

∂2F i

∂z∂z
(z)− λi

∂2ri
∂z∂z

(z)

The last two terms are dropped: they are difficult to compute and neg-
ligible if the ‖F ‖ and ‖λ‖ are small (Gauss-Newton approximation)

H(z,λ) ≈ ∂F

∂z
(z)T

∂F

∂z
(z)

To guard against ill-conditioning, a regularization matrix is added

Buu =
∂F

∂u

T ∂F

∂u
, Bux =

∂F

∂u

T ∂F

∂x
, Bxx =

∂F

∂x

T ∂F

∂x
+ γD.
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Practical considerations: regularization matrix D

The mesh regularization matrix D is taken as the stiffness matrix of the
linear elliptic PDE

∇ · (k∇vi) = 0 in Ω

for i = 1, . . . , d. The coefficient is constant over each element and in-
versely proportional to the element volume

k(x) =

min
K′∈Eh,q

|K ′|

|K|
, x ∈ K

for each element K in the mesh T : critical to maintain well-conditioned
search directions for meshes where element size varies significantly.
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SQP solver: step length (αk)

The step length, αk ∈ (0, 1], is selected using a backtracking line search
to ensure sufficient decrease of a merit function ϕk : R→ R

ϕk(αk) ≤ ϕk(0) + cαkϕ
′
k(0), c ∈ (0, 1).

We use the `1 merit function

ϕk(α) := f(zk + α∆zk) + µ ‖r(zk + α∆zk)‖1

where µ >
∥∥∥λ̂(zk)

∥∥∥
∞

because it is “exact”, i.e., any minimizer of the
original optimization problem is a minimizer of ϕk.
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Practical considerations: termination criteria

The termination criteria for the solver is based on the Karush-Kuhn-
Tucker (KKT) conditions: z? is a solution if there exist Lagrange multi-
pliers λ? such that

∇uL(z?,λ?) = 0, ∇xL(z?,λ?) = 0, r(z?) = 0

Our choice for the Lagrange multiplier estimate λ̂(z) ensures

∇uL(z, λ̂(z)) = 0

and therefore termination is based on the remaining KKT conditions∥∥∥∇xL(z, λ̂(z))
∥∥∥ < ε1, ‖r(z)‖ < ε2,

where ε1, ε2 > 0 are convergence tolerances.
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Practical considerations: initialization

Since using gradient-based optimization, good initialization of u and x
is crucial

– For p = 1 simulations, x0 comes from mesh generation without
knowledge of the shock location and u0 is the DG(p = 0) solution

– For p > 1 simulations, x0 and u0 are the p = 1 tracking solution

Reference mesh, p = 0 DG solutionLLNL Virtual Seminar Accurate CFD for Shocks 24 June 2020 59 / 62
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Choice of numerical flux function for implicit tracking

Shock tracking places strict requirements on numerical flux function since
inter-element jumps will not tend to zero on shock surface

i consistent [DG stability]: H(U,U, n) = F (U)n

ii conservative [DG stability]: H(U,U ′, n) = −H(U ′, U,−n)

iii preservation of Rankine-Hugoniot [conservation at discontinuities]

F (U+)n = F (U−)n =⇒ H(U+, U−, n) = F (U+)n = F (U−)n

iv smoothness w.r.t. n [gradient-based optimization]

Remark: Difficult to satisfy (i)-(iv); select standard numerical flux that
satisfies (i)-(iii) and smooth any nonsmooth/discontinuous features
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Example: Upwind numerical flux for linear advection

The upwind numerical flux for linear advection (Fadv(U) = UβT ) is:

Hup(U+, U−, n) = (β · n)
[
U+ ·H(β · n) + U− · (1−H(β · n))

]
,

which satisfies (i)-(iii) but is not smooth where β · n = 0 ((iv) fails).

To recover smoothness, we replace the Heaviside function H(x) with
the smoothed heaviside function Ha(x) :=

(
1 + e−2ax

)−1: a = 5 ( ),
a = 10 ( ), a = 30 ( ), a =∞ ( ).
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Non-smooth numerical flux can cause SQP solver to fail

Linear advection with trigonometric shock (p = 2)
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