
Joseph M. Powers
Department of Aerospace and Mechanical Engineering

University of Notre Dame

Florida International University
Department of Mechanical and Materials Engineering Seminar

5 February 2021

Verification in Scientific Computing:
from Pristine to Practical to Perimeter-Extending



J. M. Powers Florida International Univerisity Seminar 5 Feb 2021 2

• Signal v. Noise:  first resolve the physics, then 
verify!

• Pristine:  convergence, asymptotic convergence 
rates, multi-scale physics.

• Practical:  scarce computational resources, error 
difficult to define, what should referees expect.

• Perimeter-Extending: nonlinear dynamics, 
transition to chaos.

• Focus on continuum calculus-based models of 
reacting fluid dynamics.

Outline

Henrick, 2008
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• Verification: solving the equations right.
• Validation: solving the right equations.
• Pat Roache informed me in 1990 I was doing 

verification. (I was, but didn’t know it.)
• Seemed unnecessary.
• I was wrong.  The need exists.
• Widespread misunderstanding of V&V.
• Getting it right is important!
• Focus here is solution verification: ASME 

V&V20:  “Estimates the numerical accuracy of a 
particular calculation.” 

Verification v. Validation

Roache, 2009
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• Cathartic moment in 1978 
when I saw a finite 
difference estimation of the 
derivative approached the 
prediction given by 
Newton’s calculus begun in 
1665.

• Getting the low order 
estimate “right” is 
important!

• We can (and should) do 
high order corrections later!

Verification and Calculus

Powers and Sen, 2015
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• Getting a prediction that resolves the modeled physics is ultimately 
the most important.

• This is often not achieved.
• Low order methods, with appropriate resolution, can get the 

“signal.”
• Once this “signal” has been identified, one can and should verify it. 

(“h-refinement”).
• Once this “signal” has been identified, high order methods may be 

used for enhanced accuracy and efficiency (“p-refinement”).

Contentions
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Convergence of the Forward Euler Method

• : Solution not captured.
• : Solution captured.
• : Solution expensively captured.

noise

noise

signal
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Signal v. Noise

Silver, 2012

• First order of business: tune to the 
signal to steer clear of the noise.

• Getting the low order estimate 
“right” is important!

• A simple AM radio, tuned to the 
station, conveys the signal with 
some noise.

• A sophisticated FM radio, still 
properly tuned, conveys the signal 
with less noise. 
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Signal v. Noise in Computational Simulation

Signal Signal Signal or Noise?Henrick, 2008



J. M. Powers Florida International Univerisity Seminar 5 Feb 2021 9

Signal v. Noise Generated by Discretization
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• All frequencies represented in an arbitrary signal.
• Typically neglect low amplitude, high frequency modes.
• Such neglect may not be justified, especially for nonlinear problems.

Fourier Series Decomposition Example

Powers and Sen, 2015
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• Noisy signals may be sampled.
• Discrete Fourier Transform 

(DFT) reveals periodicity at 
various frequencies.

• May be possible to discern a 
signal in an apparently noisy 
set of data.

Fourier Signal Analysis Example

Powers and Sen, 2015
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• Consider a linear advection-reaction-diffusion problem.
• Exact solution exists.
• Gives guidance on fundamental length and time scales that 

must be resolved for verification.

Signal Discernment for a Linear Problem

Powers, 2016

evolution advection diffusion reaction
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• Suppress advection and 
diffusion.

• Exponential relaxation in 
time to equilibrium.

• Time scale for reaction 
identified as 1/a.

13

Time Scale for Spatially Homogeneous Limit

Powers, 2016
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Length Scale for Steady Limit

• Suppress time-dependency.
• Exponential relaxation in 

space to equilibrium.
• Length scale for reaction 

identified as the classical 
Maxwellian prediction:

Powers, 2016



J. M. Powers Florida International Univerisity Seminar 5 Feb 2021 15

• Long wavelength modes 
dominated by reaction.

• Short wavelength modes 
dominated by diffusion.

• For verification, must 
resolve down to the cutoff 
length scale where reaction 
balances diffusion.

• Cutoff scale dictated by 
physics!

Length and Time Scales for a Fourier Mode

Powers, 2016
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Two Reaction Extension: Stiff Linear Kinetics

Powers, 2016
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• Fully nonlinear steady 
advection-reaction model of 
hydrogen-air, of the form

• Evolution from unreacted to 
equilibrium on the scale of 
microns to meters.

• Spatial eigenvalues of the local 
Jacobian matrix reveal the local 
length scales.

Nonlinear: Stiff Realistic Hydrogen Chemistry

Powers and Paolucci, 2005
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• Reciprocals of spatial 
eigenvalues of Jacobian 

• Yields physical length scales 
that span microns to meters.

• Gives length scale necessary 
for verification.

Nonlinear: Stiff Realistic Hydrogen Chemistry

Powers and Paolucci, 2005
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Nonlinear: Stiff Realistic Hydrogen Chemistry:
Advection-Reaction-Diffusion

Powers, 2016
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Signal v. Noise:  Summary

• Just like the simple Fourier series, for nonlinear and multiscale 
problems, we find more structure if we include more terms. 

• Sometimes the physics demands we retain many terms because high 
frequency modes can carry a lot of energy.

• We induce error by neglecting some of the structure, and hope we 
retain enough structure to distinguish signal from noise.

• This is not verification, it is signal identification.  
• Once we have a signal, we can try to verify it with pristine studies.
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• Define a normed error.
• Get a discrete solution that captures the “signal.”
• Examine how the error improves as the discretization is refined.
• Compare rate of convergence rate with the rate of the method

Pristine Verification

or

Either point or entire domain can be considered.
p=1, Manhattan norm; p=2, Euclidean norm; p=   , Chessboard norm.

Caution:  If you use the second method, you might be converging to the 
wrong exact solution, as nonlinear problems have non-unique solutions!
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• 2D, inviscid reactive flow.
• Straight shock.
• Curved wall.
• Simple one-step kinetics.
• Exact solution exists.
• “Picture norm” reveals the 

signal is captured by a 
standard shock-capturing 
scheme.

• About 10 cells in the reaction 
zone.

Example:  Verification of Oblique Detonation

Powers and Aslam, 2006
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• Unsteady algorithm must allow 
time to relax to steady state.

• Similar to “iterative 
convergence.”

• Finer grids take longer to relax 
to steady state.

• Once relaxed, the steady state 
error is seen to decrease as grid 
size is increased.

Example:  Verification of Oblique Detonation

Powers and Aslam, 2006
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• Error calculated over the entire 
domain using the p=1, 
Manhattan norm.

• Error determined after time 
relaxation.

• The error is converging!  
• The error is converging at 

0.779, much less than the 
nominal fifth order method.

• Typical of most shock-
capturing.

Low Order Verification:  Shock-Capturing

Powers and Aslam, 2006
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• Implicit shock-tracking and an optimization-based, r-adaptive discontinuous 
Galerkin method lead to remarkably accurate solutions, under h-p
refinement.

• Orders of magnitude better than shock-capturing!
• Verified at p=1,2,3.

High Order Verification:  Shock-Tracking

Zahr and Powers, 2021

p=1

p=2

p=3

shock-capturing
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• Blunt body re-entry; 2D Euler equations.
• No exact solution; error small.
• Spectral convergence: verified!

Highest Order Verification: Spectral Shock-Fitting

roundoff corruption

Brooks and Powers, 2004
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• Complicated, highly accurate method.
• Like a Fourier series, a priori error estimate allows user to select 

the automatically verified error.

Automatic Verification:  Wavelet Adaptive Method

Romick, 2015 Brill, Grenga, Powers, Paolucci, 2015
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• Most problems do not have exact solutions.
• Many problems are solved with software not developed by the user.
• Many problems have complex geometries and inherent instabilities 

and/or turbulence.
• Many journals and institutions have strict (and useful) 

requirements for verification.
• As a referee and journal editor, I see significant confusion, 

summarized in the next slides, based on a 2011 presentation of 
Rider.

Practical Verification:  What Should One Do?
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• This is very common.
• It is not verified.
• It is not validated.

Typical Plot in the Literature
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• Better, because an indication 
of the experimental error is 
given.

• The prediction calculation 
remains unverified.

• So the prediction is 
unvalidated. 

A Somewhat Better Plot, Occasionally Seen
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• Showing predictions 
on several grids is an 
improvement.

• This does not 
demonstrate 
verification, as the 
solution is not 
converging.

An Attempt at Verification, Often Seen
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• Because the solution is 
approaching something as the 
grid is refined, it is showing 
convergence, and perhaps 
verification.

• The error is not quantified.
• The order of convergence is 

not quantified.
• We can do better in 2021!

A Somewhat Better Verification
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•Give a log-log plot of error as function 
of grid size.

•Compare to the asymptotic 
convergence rate.

•Often insist as referee and editor.
•You will get pushback.
•It is usually unwarranted.
•Most authors will comply.
•Some will find real errors and fix 
them.

A Much Better Verification
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A Useful Tool:  Journal Policies

Roache, Ghia, White, 1986,
Journal of Fluids Engineering-
Transactions of the ASME

35 year-old policy!

“The Journal of Fluids 
Engineering will not accept for 
publication any paper reporting 
the numerical solution of a fluids 
engineering problem that fails to 
address the task of systematic 
truncation error testing and 
accuracy estimation.”
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An analysis of numerical errors, including grid dependence, etc., must be
conducted in accordance with AIAA editorial policy. For more details
regarding the latter, see

https://www.aiaa.org/publications/books/Publication-
Policies/Editorial-Policy-Statement-on-Numerical-and-
Experimental-Accuracy

Please provide a log-log plot of how some error measure decreases as the 
grid is refined (or equivalently, coarsened) and a comparison of the 
achieved order of convergence with the nominal convergence rate of your 
chosen numerical method.

My Boilerplate Language—Usually Works

https://www.aiaa.org/publications/books/Publication-Policies/Editorial-Policy-Statement-on-Numerical-and-Experimental-Accuracy
https://www.aiaa.org/publications/books/Publication-Policies/Editorial-Policy-Statement-on-Numerical-and-Experimental-Accuracy
https://www.aiaa.org/publications/books/Publication-Policies/Editorial-Policy-Statement-on-Numerical-and-Experimental-Accuracy
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• I don’t have enough computing resources. Then do grid 
coarsening.

• My software package won’t let me verify. Do a point 
convergence study.

• My problem is unsteady/turbulent. Seek an error norm 
for an integrated quantity like drag coefficient or net 
thrust.

• I’m not going to do it. Decline the manuscript.

Common Responses
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• Non-continuum regime where calculus-methods are difficult.
• Solutions with embedded surfaces of discontinuity (shocks, material interfaces).

• Problems with embedded “switches.”

• Problems with parameters (geometry, material properties, 
forcing functions) with a stochastic nature.

• Problems that do not relax to steady-state.
• Nonlinear deterministic problems that may have chaotic nature.

Perimeter-Expanding Verification:
Challenge Areas

co
ns

id
er

ed
he

re
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• Big can affect small.
• Small can affect big.
• Predictions of “big” and “small” 

should not be machine-dependent.
• Difficult to guarantee!

Nonlinear Dynamics and Verification

“Big whorls have little whorls,
Which feed on their velocity;
And little whorls have lesser whorls,
And so on to viscosity.”

https://www.weather.gov/mob/katrina

Lewis Fry Richardson, 1922, 
Weather Prediction by Numerical Processes.
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• Nonlinear models reflect that nature can be
• well-behaved and mainly stable,

• ill-behaved with intermittent catastrophic events.

• Predictive science needs to predict repeatable phenomena repeatably.
• We can learn about nature by careful charting of unknown territory.
• Careful charting takes time and cannot address all important problems!
• I will show verified results for a nonlinear problem that undergoes a 

transition to chaos.
• The “verification” lies in taking care that the persistent modes are 

resolved: the “signal” has been captured.

Nonlinear Dynamics and Verification
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• All modes stable.
• High frequency modes decay rapidly and can be neglected.

Local Linear Behavior May be Stable or Unstable

• Push the same system into a different regime.
• Nonlinearity can induce growth of some modes.
• Must be resolved for verified solution.
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• Piston at speed Up drives a detonation at speed D(t).
• Large Up yields stability, though with some thin zones.
• As Up is lessened, chemical energy plays a larger role and destablizes.
• Acoustic resonances induce high frequency stable limit cycles.
• “Signal” scales: viscous shock zone, reaction zone, small wavelength resonances.

Viscous 1D Detonation
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Continuum Model Equations
Conservation and Evolution Laws Constitutive Models

• 1D, compressible, reactive Navier-Stokes.
• 1 step, irreversible Arrhenius kinetics.
• Ideal gas, Newtonian fluid, Fourier’s Law, Fick’s Law.
• Solved with adaptive wavelet algorithm for full 

verification.
• Activation energy varied to study stability behavior.
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• The wavelet method resolves the viscous shock, induction, 
and reaction zone. Signal verification!

Stable, Viscous, 1D Detonation

Singh, Rastigejev, Paolucci, Powers, 2001
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• Low activation energy results 
induce stability.

• Peak pressure at viscous shock 
front evolves with time.

• Relaxes to a steady state value.
• In the inviscid limit, grid 

refinement is sufficient to 
capture the linear stability 
boundary.

Romick, Aslam, and Powers 2012

Stable, Viscous, 1D Detonation
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Viscous, 1D Detonation:  Period 1 Instability

• Raising activation energy induces 
an unstable mode.

• Peak pressure at viscous shock 
front evolves with time.

• Relaxes to a long-time limit cycle.

Romick, Aslam, Powers, 2012
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Viscous, 1D Detonation:  Various Instabilities

• Raising activation energy 
induces more and more 
instabilities.

• Can induce chaos c).
• Raising activation energy 

further can induce low 
frequency limit cycles, d).

Romick, Aslam, Powers, 2012
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• With activation energy 
as a bifurcation 
parameter, a transition 
to chaos is predicted.

• Feigenbaum constant 
predicted as 4.67.

Viscous, 1D Detonation:  Transition to Chaos

Romick, Aslam, Powers, 2012
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• a posteriori spectral analysis of the 
signal via Discrete Fourier 
Transform (DFT).

• Fundamental modes and harmonic 
overtones revealed.

• Sideband instabilities revealed.
• They persist under grid resolution:  

verification!
• Refine until stability results do not 

change (Reed, et al., 2015).

Spectral Analysis of the Signal for Verification

Romick, Aslam, Powers, 2015; results for detailed H2-air kinetics.
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• DFT at various 
activation energies.

• Reveals the discrete, 
ordered, verified set 
of active Fourier 
modes.

Spectral Analysis of the Signal for Verification

Romick, 2015
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• Experimental colleagues in material science 
use spectral analysis in X-Ray Diffraction 
(XRD) as a precision tool for material 
characterization.

• Here, spectral peaks associated with Ni, Al, 
and NiAl shown.

• Effective tool for segregating signal from 
noise.

• This tool should be used more in verification 
of computational predictions of unsteady 
phenomena.

Computational Science can Learn from Material 
Science
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• Gray-Scott reaction-diffusion model.
• Reduction to analytically filter fast kinetics falsely suppresses limit cycle.

Model Reduction:  The Signal May Be Lost!

Mengers, 2012

reduced 

full
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• Computational science requires the essence of prediction of deterministic 
continuum systems to be machine- and algorithm-independent.

• What constitutes “essence” always requires user-choices; hopefully the 
neglected terms are not influential!

• Capturing the “essence” must be informed by the underlying physics.
• Pristine verification is a useful exercise to give the user confidence that 

the results are scientific, but unrealistic for many problems.
• Practical verification is important for the integrity of science.
• Perimeter-extending verification, e.g. verifying spectral amplitudes, is 

ongoing and highly challenging!
• Segregating “signal” and “noise” will never be easy!

Conclusions
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