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Motivation

1. Development of insensitive explosives

• Risk minimization in storage and handling

• Weapon system development

2. Development of transient detonation models

• steady detonation better characterized

• late-time hydrodynamics better characterized

• early time ignition poorly understood

– thermal stimuli

– mechanical stimuli, e.g. shear banding



Shear Banding

(b) (c)(a)

Plastic work →

• Strain hardening

• Strain rate hardening

• Thermal softening

→ Shear localization

→ Hot spot?

→ Reaction?



Approach

1. Experiment

• Obtain data for constitutive theory (via torsional

split-Hopkinson bar)

• Observe shear localization and other failure mecha-

nisms (via ultra high speed photography)

2. Theory

• Develop model

• Implement numerical method-of-lines approach

• Predict shear localization and ignition



Novelty

1. Stress-strain-strain rate characterization of explosive

simulant PBX 9501

• C1.47H2.86N2.6O2.69

• 95 % HMX; 2.5 % estane; 2.5 % BDNPA-F binder

• rubbery material not well suited for shear localiza-

tion studies!

2. Extension of Frey’s (1981) analysis to include strain

rate effects

3. Sensitivity analysis performed



Experimental Method

Torsional Split-Hopkinson Bar
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Data Analysis

Time (µs)

S
he

ar
 S

tr
ai

n 
(m

/m
)

Incident Pulse 

Transmitted Pulse

Reflected Pulse

Shear strain in the specimen:

γ̄ (t) = −
2cd

LD

∫ t
0
γR

(
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)

dt̃

Shear stress in the specimen:

τ̄ (t) =
GD3

8d2w
γT (t)

(Hartley, Duffy and Hawley, Metals Handbook, 1985)



Experimental Results

Torsional Split Hopkinson Bar Tests of PBX 9501 Simulant
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γ =  300 s  , Test 29-1.

γ = 2800 s  , Test 36-1.

Average Shear Strain, γ

• Stress overshoot

• Lower strain rate failure→Void nucleation and growth

• Higher strain rate failure → Brittle fracture



Ultra-High Photography of Failure

• photos with Notre Dame’s Cordon 350 camera

• failure time correlates with strain gage results



Model

z

z = 0 z = L

v  = 0

r
θ

θ
v1v  =θ

v1v  =θ

• Thin walled, cylindrical specimen

• Initially unreacted, unstressed, and at ambient tem-

perature

• vr = vz = ur = uz = 0

• ∂
∂θ = ∂

∂r = 0

• Plastic work completely converted to heat

• One-step Arrhenius chemistry



Model Equations
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Reduced System

Parabolic Partial Differential Equation System
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Numerical Method

• Parabolic system of PDE’s–method of lines

• 2nd order finite difference spatial discretization

• 4th order implicit (LSODE) solution of ODE’s in time
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Convergence--Stokes’ First Problem



Localization Criteria

Adiabatic shear bands typically initiate at a point after a maximum

stress is reached in the shear stress-shear strain relationship at that

point (Zener and Hollomon, 1944):
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Theoretical Results

1. PBX 9501 without reaction, γ̇ = 2800 s−1
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Φ, Thermal Softening

Ψ, Strain Hardening,
    Strain Rate Hardening
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Ψ ≤ Φ

• Φ represents thermal softening

• Ψ represents strain and strain rate hardening

• Localization onset predicted after 1600 µs



PBX 9501 without reaction, Cont.
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Three stage localization process (Marchand and Duffy,

1988):

• Stage I: Homogeneous deformation

• Stage II: Inhomogeneous deformation

• Stage III: Shear band or shear localization



PBX 9501 without reaction, Cont.
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Key Issues

(a) Formation of spike following onset of localization

• After 1.67 ms, Tmax = 458 K

• After 3.2 ms, Tmax = 1590 K

(b) Initiation temperature is only 513 K



PBX 9501 without reaction, Cont.
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Average Shear Strain, γ

• Predictions accurate for γ̄ ≤ 0.2

• Experimental failure at γ̄ ≈ 0.2

• Predicted localization at γ̄ ≈ 3.5

• Predicted failure at γ̄ ≈ 8.0

• Failure occurs due to mechanisms other than shear

localization



Theoretical Results, Cont.

2. PBX 9501 with reaction
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PBX 9501 with Reaction, Cont.
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• Reaction occurred before development of temperature spike

• Initiation extremely sensitive to temperature

– No significant reaction prior to localization

– Reaction proceeds quickly once reaction temperature reached

– Reaction occurs at localized hot spot

• Strain at reaction is 6.4, (but experimental failure at γ̄ = 0.2)



Sensitivity Analysis

Parameter Definition Description Value t̂loc = v1tloc

L

47.019 4.707

α̂
αT ν

o v
µ−2

1

ρLµ Stress Constant 470.19 4.710

4701.9 4.713

0.0068 26.703

α̂ Ec
αT ν−1

o v
µ
1

ρcALµ (Stress Constant)(Eckert Number) 0.068 4.710

0.68 0.857

8.01 × 102 4.791

Pe ρcAv1L

k
Peclet Number 8.01×10

4
4.710

8.01 × 108 4.707

8.64 4.701

Q̂
eo

A−ao
B

cATo
Scaled Heat Release 17.49 4.710

34.56 4.713

1.79 × 106 4.712

1.79 × 1011 4.712

Ẑ ZL
v1

Scaled Kinetic Rate Constant 1.79×10
16

4.710

44.52 Reaction

Ê E
RTo

Scaled Activation Energy 89.04 4.710

0.5 4.715

ĉ cB

cA
Ratio of Specific Heats 1.0 4.710

2.0 4.705

0.032 1.311

0.16 4.056

η Strain Hardening Parameter 0.320 4.710

0.640 Reaction

0.02 2.954

µ Strain Rate Hardening Parameter 0.080 4.710

0.32 Reaction

-0.345 Reaction

ν Thermal Softening Parameter -1.28 4.710



Conclusions

• Numerical modeling indicates that if shear banding

occurs, it can lead to reaction initiation

• Experiments consistently revealed failure due to mech-

anisms other than shear localization

– ductile mechanisms at low strain rate, 300 s−1

– brittle mechanisms at high strain rate, 2800 s−1

• Decreasing the strain and/or strain rate effects and

increasing the thermal softening effect increases the

susceptibility to localization



Future

• Study explosives which are more susceptible to shear

banding

• Use ultra-high speed photography to observe failure

ignition

• Apply hydrostatic pressure to suppress brittle failure

mechanisms

• Extend models to account for material heterogeneity

• Extension to multi-dimensionality


