Modeling and Experimental Investigation of Reactive Shear Bands in Energetic Solids Loaded in Torsion

by

R. J. Caspar ¹, J. M. Powers ², J. J. Mason ³

Department of Aerospace and Mechanical Engineering
University of Notre Dame

presented at the

16th ICDERS

Cracow, Poland

August 1997

¹Graduate Research Assistant, present location: Gulfstream Aerospace Corporation, Savannah, Georgia

 $^{^2 {\}bf Associate~Professor}$

³Assistant Professor

Support

Armament Directorate of Wright Laboratories,

Eglin Air Force Base, Florida

through

Air Force Office of Scientific Research,
Research and Development Laboratories
Summer Faculty Research Program

Motivation

- 1. Development of insensitive explosives
 - Risk minimization in storage and handling
 - Weapon system development
- 2. Development of transient detonation models
 - steady detonation better characterized
 - late-time hydrodynamics better characterized
 - early time ignition poorly understood
 - thermal stimuli
 - mechanical stimuli, e.g. shear banding

Shear Banding

Plastic work \rightarrow

- Strain hardening
- Strain rate hardening
- Thermal softening
- \rightarrow Shear localization
- \rightarrow Hot spot?
- \rightarrow Reaction?

Approach

1. Experiment

- Obtain data for constitutive theory (via torsional split-Hopkinson bar)
- Observe shear localization and other failure mechanisms (via ultra high speed photography)

2. Theory

- Develop model
- Implement numerical method-of-lines approach
- Predict shear localization and ignition

Novelty

- 1. Stress-strain-strain rate characterization of explosive simulant PBX 9501
 - \bullet $C_{1.47}H_{2.86}N_{2.6}O_{2.69}$
 - 95 % HMX; 2.5 % estane; 2.5 % BDNPA-F binder
 - rubbery material not well suited for shear localization studies!
- 2. Extension of Frey's (1981) analysis to include strain rate effects
- 3. Sensitivity analysis performed

Experimental Method

$Torsional\ Split-Hopkinson\ Bar$

Notre Dame Solid Mechanics Laboratory

Data Analysis

Shear strain in the specimen:

$$\bar{\gamma}\left(t\right) = -\frac{2cd}{LD} \int_{0}^{t} \gamma_{R}\left(\tilde{t}\right) d\tilde{t}$$

Shear stress in the specimen:

$$\bar{\tau}(t) = \frac{GD^3}{8d^2w} \gamma_T(t)$$

(Hartley, Duffy and Hawley, Metals Handbook, 1985)

Experimental Results

Torsional Split Hopkinson Bar Tests of PBX 9501 Simulant

- Stress overshoot
- ullet Lower strain rate failure \rightarrow Void nucleation and growth
- \bullet Higher strain rate failure \rightarrow Brittle fracture

Ultra-High Photography of Failure

- photos with Notre Dame's Cordon 350 camera
- failure time correlates with strain gage results

Model

- Thin walled, cylindrical specimen
- Initially unreacted, unstressed, and at ambient temperature

$$\bullet v_r = v_z = u_r = u_z = 0$$

$$\bullet \frac{\partial}{\partial \theta} = \frac{\partial}{\partial r} = 0$$

- Plastic work completely converted to heat
- One-step Arrhenius chemistry

Model Equations

$$\begin{split} \rho w \frac{\partial v_{\theta}}{\partial t} &= \frac{\partial}{\partial z} \left(w \tau \right) & \text{linear momentum} \\ \rho w \frac{\partial e}{\partial t} &= w \tau \frac{\partial v_{\theta}}{\partial z} - \frac{\partial}{\partial z} \left(w q_z \right) & \text{energy conservation} \\ \frac{\partial \lambda}{\partial t} &= Z \left(1 - \lambda \right) \exp \left(- \frac{E}{RT} \right) & \text{reaction kinetics} \\ \gamma &= \frac{\partial u_{\theta}}{\partial z} & \text{strain definition} \\ v_{\theta} &= \frac{\partial u_{\theta}}{\partial t} & \text{velocity definition} \\ \tau &= \alpha \ T^{\nu} \ \gamma^{\eta} \ \left| \frac{\partial \gamma}{\partial t} \right|^{\mu - 1} \left(\frac{\partial \gamma}{\partial t} \right) & \text{stress relation} \\ q_z &= -k \frac{\partial T}{\partial z} & \text{Fourier's Law} \\ e &= Y_A e_A + Y_B e_B & \text{total internal energy} \\ e_A &= c_A T + e_A^o & \text{reactant internal energy} \\ Y_A &= 1 - \lambda & \text{reactant mass fraction} \\ e_B &= c_B T + e_B^o & \text{product internal energy} \\ Y_B &= \lambda & \text{product mass fraction} \\ w &= w_0 - \frac{h_p}{2} \left[1 - \cos \left(\frac{2\pi z}{L_s} \right) \right] & \text{geometry} \end{split}$$

Reduced System

Parabolic Partial Differential Equation System

$$\frac{\partial v_{\theta}}{\partial t} = \frac{1}{\rho w} \frac{\partial}{\partial z} \left[w \alpha \, T^{\nu} \left(\frac{\partial u_{\theta}}{\partial z} \right)^{\eta} \left| \frac{\partial v_{\theta}}{\partial z} \right|^{\mu-1} \frac{\partial v_{\theta}}{\partial z} \right]
\frac{\partial T}{\partial t} = \frac{1}{\rho \left[c_{A} \left(1 - \lambda \right) + c_{B} \lambda \right]} \left[\alpha T^{\nu} \left(\frac{\partial u_{\theta}}{\partial z} \right)^{\eta} \left| \frac{\partial v_{\theta}}{\partial z} \right|^{\mu+1} + \frac{k}{w} \frac{\partial}{\partial z} \left(w \frac{\partial T}{\partial z} \right) \right.
+ \left. Z \, \rho \left[e_{A}^{o} - e_{B}^{o} + \left(c_{A} - c_{B} \right) T \right] \left(1 - \lambda \right) \exp \left(- \frac{E}{RT} \right) \right]
\frac{\partial u_{\theta}}{\partial t} = v_{\theta}
\frac{\partial \lambda}{\partial t} = Z \left(1 - \lambda \right) \exp \left(- \frac{E}{RT} \right)$$

Boundary Conditions

$$v_{\theta}(t,0) = 0 , \quad v_{\theta}(t,L) = \begin{cases} (v_{1} - v_{0}) \frac{t}{t_{1}} + v_{0} & t < t_{1} \\ v_{1} & t \ge t_{1} \end{cases}$$

$$u_{\theta}(t,0) = 0 , \quad u_{\theta}(t,L) = \begin{cases} (v_{1} - v_{0}) \frac{t^{2}}{2t_{1}} + v_{0}t & t < t_{1} \\ (v_{1} - v_{0}) \frac{t_{1}}{2} + v_{0}t_{1} + v_{1}(t - t_{1}) & t \ge t_{1} \end{cases}$$

$$\frac{\partial T}{\partial z}(t,0) = 0 , \quad \frac{\partial T}{\partial z}(t,L) = 0 \qquad t \ge 0 .$$

Initial Conditions

$$v_{\theta}(0,z) = v_0 \frac{z}{L}$$
, $u_{\theta}(0,z) = 0$, $T(0,z) = T_0$, $\lambda(0,z) = 0$.

Numerical Method

- Parabolic system of PDE's–method of lines
- \bullet 2nd order finite difference spatial discretization
- \bullet 4th order implicit (LSODE) solution of ODE's in time

Localization Criteria

Adiabatic shear bands typically initiate at a point after a maximum stress is reached in the shear stress-shear strain relationship at that point (Zener and Hollomon, 1944):

$$\left. \frac{\partial \tau}{\partial \gamma} \right|_z \le 0$$

With

$$\tau = \tau\left(T,\gamma,\dot{\gamma}\right)$$

Localization criterion (Meyers, 1994):

$$\left. \frac{\partial \tau}{\partial \gamma} \right|_{T,\dot{\gamma}} + \left. \frac{\partial \tau}{\partial \dot{\gamma}} \right|_{T,\gamma} \frac{\partial \dot{\gamma}/\partial t|_z}{\partial \gamma/\partial t|_z} \le -\frac{\tau}{\rho c_A} \left. \frac{\partial \tau}{\partial T} \right|_{\gamma,\dot{\gamma}}$$

Theoretical Results

1. PBX 9501 without reaction, $\dot{\gamma} = 2800~s^{-1}$

$$\left. \frac{\partial \tau}{\partial \gamma} \right|_{T,\dot{\gamma}} + \left. \frac{\partial \tau}{\partial \dot{\gamma}} \right|_{T,\gamma} \frac{\partial \dot{\gamma}/\partial t|_z}{\partial \gamma/\partial t|_z} \leq - \frac{\tau}{\rho c_A} \left. \frac{\partial \tau}{\partial T} \right|_{\gamma,\dot{\gamma}}$$

$$\Psi \leq \Phi$$

- \bullet Φ represents thermal softening
- \bullet Ψ represents strain and strain rate hardening
- \bullet Localization onset predicted after 1600 μs

PBX 9501 without reaction, Cont.

Three stage localization process (Marchand and Duffy, 1988):

- Stage I: Homogeneous deformation
- Stage II: Inhomogeneous deformation
- Stage III: Shear band or shear localization

PBX 9501 without reaction, Cont.

Key Issues

- (a) Formation of spike following onset of localization
 - After 1.67 ms, $T_{max} = 458 K$
 - After 3.2 ms, $T_{max} = 1590 K$
- (b) Initiation temperature is only 513 K

PBX 9501 without reaction, Cont.

- Predictions accurate for $\bar{\gamma} \leq 0.2$
- Experimental failure at $\bar{\gamma} \approx 0.2$
- Predicted localization at $\bar{\gamma} \approx 3.5$
- Predicted failure at $\bar{\gamma} \approx 8.0$
- Failure occurs due to mechanisms other than shear localization

Theoretical Results, Cont.

2. PBX 9501 with reaction

PBX 9501 with Reaction, Cont.

- Reaction occurred before development of temperature spike
- Initiation extremely sensitive to temperature
 - No significant reaction prior to localization
 - Reaction proceeds quickly once reaction temperature reached
 - Reaction occurs at localized hot spot
- Strain at reaction is 6.4, (but experimental failure at $\bar{\gamma} = 0.2$)

Sensitivity Analysis

Parameter	Definition	Description	Value	$\hat{t}_{loc} = \frac{v_1 t_{loc}}{L}$
\hat{lpha}	$\frac{\alpha T_o^{\nu} v_1^{\mu-2}}{\rho L^{\mu}}$	Stress Constant	47.019 470.19 4701.9	4.707 4.710 4.713
$\hat{\alpha} \; Ec$	$\frac{\alpha T_o^{\nu-1} v_1^{\mu}}{\rho c_A L^{\mu}}$	(Stress Constant)(Eckert Number)	0.0068 0.068 0.68	26.703 4.710 0.857
Pe	$\frac{ ho c_A v_1 L}{k}$	Peclet Number	8.01×10^{2} 8.01×10^{4} 8.01×10^{8}	4.791 4.710 4.707
Q	$\frac{e_A^o - a_B^o}{c_A T_o}$	Scaled Heat Release	8.64 17.49 34.56	4.701 4.710 4.713
\hat{Z}	$rac{ZL}{v_1}$	Scaled Kinetic Rate Constant	1.79×10^{6} 1.79×10^{11} 1.79×10^{16}	4.712 4.712 4.710
\hat{E}	$\frac{E}{RT_o}$	Scaled Activation Energy	44.52 89.04	Reaction 4.710
\hat{c}	<u>св</u> с _А	Ratio of Specific Heats	0.5 1.0 2.0	4.715 4.710 4.705
η		Strain Hardening Parameter	0.032 0.16 0.320 0.640	1.311 4.056 4.710 Reaction
μ		Strain Rate Hardening Parameter	0.02 0.080 0.32	2.954 4.710 Reaction
ν		Thermal Softening Parameter	-0.345 -1.28	Reaction 4.710

Conclusions

- Numerical modeling indicates that if shear banding occurs, it can lead to reaction initiation
- Experiments consistently revealed failure due to mechanisms other than shear localization
 - ductile mechanisms at low strain rate, $300 \ s^{-1}$
 - brittle mechanisms at high strain rate, $2800 \ s^{-1}$
- Decreasing the strain and/or strain rate effects and increasing the thermal softening effect increases the susceptibility to localization

Future

- Study explosives which are more susceptible to shear banding
- Use ultra-high speed photography to observe failure ignition
- Apply hydrostatic pressure to suppress brittle failure mechanisms
- Extend models to account for material heterogeneity
- Extension to multi-dimensionality