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Motivation

• Detailed kinetics models are widely used in detonation

simulations.

• The finest length scale predicted by such models is

usually not clarified and often not resolved.

• Tuning computational results to match experiments

without first harmonizing with underlying mathematics

renders predictions unreliable.



Model: Reactive Euler Equations

• one-dimensional

• steady

• inviscid

• detailed Arrhenius kinetics

• calorically imperfect ideal gas mixture



Model: Reactive Euler Equations

ρu = ρoD,

ρu2 + p = ρoD
2 + po,

e +
u2

2
+

p

ρ
= eo +

D2

2
+

po

ρo

,

dYi

dx
= fi ≡

ω̇iMi

ρoD
.

Supplemented by state equations and the law of mass

action.



Reduced Model

Algebraic reductions lead to a final form of

dYi

dx
= fi(Y1, . . . , YN−L)

with

• N : number of molecular species

• L: number of atomic elements



Eigenvalue Analysis of Local Length Scales

Local behavior is modelled by

dY

dx
= J · (Y − Y

∗) + b, Y(x∗) = Y
∗,

whose solution has the form

Y(x) = Y
∗ +

(

P · eΛ(x−x
∗) · P−1 − I

)

· J−1 · b.

Here Λ has eigenvalues λi of Jacobian J in its diagonal.

The length scales are given by

ℓi(x) =
1

|λi(x)|
.



Computational Methods

• A standard ODE solver (DLSODE) was used to inte-

grate the equations.

• Standard IMSL subroutines were used to evaluate the

local Jacobians and eigenvalues at every step.

• The Chemkin software package was used to evaluate

kinetic rates and thermodynamic properties.

• Computation time was typically two minutes on a

900 MHz Sun Blade 1000.



Physical System

• Hydrogen-air detonation: 2H2 + O2 + 3.76N2.

• N = 9 molecular species, L = 3 atomic elements,

J = 19 reversible reactions.

• po = 1 atm.

• To = 298 K .

• Identical to system studied by both Shepherd (1986)

and Mikolaitis (1987).



Mole Fractions versus Distance
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• significant evolution at fine length scales

x < 10−3 cm.



Temperature Profile
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• Temperature flat in the post-shock induction

zone 0 < x < 2.6 × 10−2 cm.

• Thermal explosion followed by relaxation to



Eigenvalue Analysis: Length Scale Evolution
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• Finest length scale: 2.3 × 10−5 cm.

• Coarsest length scale 3.0 × 101 cm.

• Finest length scale similar to that necessary for



Influence of Initial Pressure
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• Induction zone length and finest length scale

are sensitive to initial pressure.

• Finest length scale three orders of magnitude



Verification: Comparison with Mikolaitis
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• Lagrangian calculation allows direct

comparison with Mikolaitis’ results.

• agreement very good.



Grid Convergence
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• Finest length scale must be resolved to

converge at proper order.

• Results are converging at proper order for first



Numerical Stability
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∆x = 1.00 x 10  cm (stable)
-5

∆x = 2.00 x 10  cm (stable)
-4

∆x = 2.38 x 10  cm (unstable)
-4

• Discretizations finer than finest physical length

scale are numerically stable.

• Discretizations coarser than finest physical



Examination of Recently Published Results

Ref. ℓind (cm) ℓf (cm) ∆x (cm)

Oran, et al, 1998 1.47× 10−1 2.17× 10−4 3.88× 10−3

Shepherd, et al., 2003 1.46× 10−1 2.16× 10−4 AMR

Hayashi, et al., 2002 1.50× 10−2 1.23× 10−5 5.00× 10−4

Powers, et al., 2001 1.54× 10−2 2.76× 10−5 8.14× 10−5

Fedkiw, et al., 1997 1.54× 10−2 2.76× 10−5 3.00× 10−2

Ebrahimi and Merkle, 2002 5.30× 10−3 7.48× 10−6 1.00× 10−2

Sislian, et al., 1998 1.38× 10−1 2.23× 10−4 1.00× 100

All are under-resolved, some severely.



Conclusions

• Detonation calculations are often under-resolved, by

as much as four orders of magnitude.

• Equilibrium properties are insensitive to resolution,

while transient phenomena can be sensitive.

• Sensitivity of results to resolution is not known a priori.

• Numerical viscosity stabilizes instabilities.

• For a repeatable scientific calculation of detonation,

the finest physical scales must be resolved.



Moral

You either do detailed kinetics with the

proper resolution,

or

you are fooling yourself and others, in

which case you should stick with

reduced kinetics!


