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Motivation
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Development of insensitive solid explosives

Development of transient detonation models for solid explosives

• steady detonation relatively well-characterized,

• late-time hydrodynamic transients relatively well-characterized,

• early time ignition events poorly understood

• thermal stimuli

• mechanical stimuli, e.g. shear localization, also known as shear band-
ing



Shear Localization
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(b) (c)(a)

a) Initial homogeneous unstrained state,

b) Applied shear force induces uniform strain,

c) Shear localization induced by local inhomogeneity

• Shear localization occurs when thermal softening dominates over strain
and strain rate hardening

• Hypothesized hot spot location for reaction initiation



Approach and Novelty
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• Approach

– Obtain data for high strain rate constitutive theory from Notre Dame
torsional split-Hopkinson bar

– Use simple model to predict

∗ spatially homogeneous time-dependent solutions

∗ spatially inhomogeneous time-independent solutions

• Novelty

– Experimental stress-strain-strain rate characterization of inert simu-
lant (Mock 900-20) of heterogeneous explosive LX-14

(95.5 % HMX, 4.5 % Estane 5703-P; C1.52H2.92N2.59O2.66)

– Extension of Frey’s (1981) analysis to include strain rate effects

– new application of thermal explosion theory

– sensitivity analysis performed



Experimental Method
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Torsional Split Hopkinson Bar-Notre Dame Solid Mechanics Laboratory
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Experimental Results
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Torsional Split Hopkinson Bar Test Results for LX-14 simulant (Mock 900-20)
and theoretical model predictions
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peak stress at
γ = 0.065

failure at
γ = 0.09, t = 350 µs
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Model Assumptions
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z = 0

v  = 0θ

z

z = L 

r
θ

θ

v
L

v  =θ

v  =  v  
L

thin-walled cylindrical geometry

initially unreacted, unstressed, and cold

vr = vz = ur = uz = 0

∂
∂θ

= ∂
∂r

= 0

one step Arrhenius chemistry

incompressible

constant properties



Model Equations
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ρ
∂vθ

∂t
=

∂τ

∂z
, momentum conservation

ρ
∂e

∂t
= τ

∂vθ

∂z
−

∂qz

∂z
, energy conservation

∂λ

∂t
= a (1 − λ) exp

(
−

E

ℜT

)
, reaction kinetics

∂uθ

∂t
= vθ , displacement definition

τ = α

(
T

T0

)ν (
∂uθ

∂z

)η (
∂vθ

∂z

L

vL

)µ

, constitutive equation for stress

qz = −k
∂T

∂z
, Fourier’s Law

e = c T − λ q̃ . caloric state equation

Differential-Algebraic system can be shown to be parabolic.



Boundary and Initial Conditions
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Boundary Conditions

specified velocity and displacement at both ends, thermally insulated

vθ (t,0) = 0, vθ (t, L) = vL, uθ (t,0) = 0, uθ (t, L) = vLt,

∂T

∂z
(t,0) = 0,

∂T

∂z
(t, L) = 0.

Initial Conditions

spatially homogeneous strain rate, unstrained, unreacted, temperature per-
turbation near center

vθ (0, z) = vL

z

L
, uθ (0, z) = 0, λ (0, z) = 0,

T (0, z) =

{
T0, z 6∈

[
L
2
(1 − ǫ̂L),

L
2
(1 + ǫ̂L)

]
,

T0(1 + ǫ̂T), z ∈
[

L
2
(1 − ǫ̂L),

L
2
(1 + ǫ̂L)

]
.



Scaling
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Scaled independent variables

z∗ =
z

L
, t∗ =

vL

L
t,

Scaled dependent variables

v∗ =
vθ

vL

, T∗ =
T

T0

, λ∗ = λ, u∗ =
uθ

L
.

Dimensionless Parameters

α̂ =
α

ρv2
L

, Êc =
v2

L

cT0
, P̂ e =

ρc

k
vLL, q̂ =

q̃

cT0
, â =

L

vL

a, Θ̂ =
E

ℜT0
.



Reduced Dimensionless Equations,
Initial and Boundary Conditions
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∂v∗

∂t∗
= α̂

∂

∂z∗

(
T ν
∗

(
∂u∗

∂z∗

)η (
∂v∗

∂z∗

)µ)
,

∂T∗

∂t∗
= α̂ Êc T ν

∗

(
∂u∗

∂z∗

)η (
∂v∗

∂z∗

)µ+1

+
1

P̂ e

∂2T∗

∂z2
∗

+ â q̂ (1 − λ∗) exp

(
−

Θ̂

T∗

)
,

∂λ∗

∂t∗
= â (1 − λ∗) exp

(
−

Θ̂

T∗

)
,

∂u∗

∂t∗
= v∗.

v∗(t∗,0) = 0, v∗(t∗,1) = 1, u∗(t∗,0) = 0, u∗(t∗,1) = t∗,

∂T∗

∂z∗
(t∗,0) = 0,

∂T∗

∂z∗
(t∗,1) = 0, v∗ (0, z∗) = z∗, u∗ (0, z∗) = 0, λ∗ (0, z∗) = 0,

T (0, z∗) =

{
1, z∗ 6∈

[
1
2
(1 − ǫ̂L),

1
2
(1 + ǫ̂L)

]
,

1 + ǫ̂T , z∗ ∈
[
1
2
(1 − ǫ̂L),

1
2
(1 + ǫ̂L)

]
.

.

.



Thermal Explosion Theory
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• Unsteady solutions indicate early time behavior is largely spatially homo-
geneous

• Formally examine such behavior by assuming

• negligibly small temperature perturbation ǫT

• T∗ = T∗(t∗) (requires P̂ e >> 1)
• λ∗ = λ∗(t∗)
• v∗ = z∗
• u∗ = z∗t∗

Result is two non-autonomous ordinary differential equations in T∗ and λ∗:

dT∗

dt∗
= α̂ Êc T ν

∗ tη
∗ + â q̂ (1 − λ∗) exp

(
−

Θ̂

T∗

)
, T∗(0) = 1,

dλ∗

dt∗
= â (1 − λ∗) exp

(
−

Θ̂

T∗

)
, λ∗(0) = 0.



Approximate Solution
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Neglect reaction in favor of plastic work at early time

dT∗

dt∗
= α̂ Êc T ν

∗ tη
∗, t∗ < t∗i, T∗(0) = 1.

Exact solution available:

T∗(t∗) =

(
1 − ν

1 + η
α̂ Êc tη+1

∗ + 1

) 1

1−ν

, t∗ < t∗i.

Determine time when reaction balances plastic work:

α̂ Êc

(
1 − ν

1 + η
α̂ Êc t

η+1
∗i + 1

) ν

1−ν

t
η
∗i = â q̂ exp

[
−Θ̂

(
1 − ν

1 + η
α̂ Êc t

η+1
∗i + 1

)− 1

1−ν

]
.



Asymptotic Solution
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Consider high activation energy limit

T∗ = 1 +
1

Θ̂
T∗1 + · · · , λ∗ =

1

Θ̂
λ∗1 + · · · ,

Energy equation reduces to

dT∗1

dt∗
= β̂1

(
tη
∗ + β̂2e

T∗1
)
, T∗1(0) = 0, β̂1 = Θ̂ α̂ Êc, β̂2 =

â q̂

α̂Êc eΘ̂
.

For η = 0, induction time is

t∗i0 =
1

Θ̂ α̂ Êc
ln

(
α̂ Êc eΘ̂

â q̂

)
, (η = 0).



Numerical Solution Method
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• ODE’s from thermal explosion theory solved with NDSolve in Mathemat-
ica 3.0 to 16 digits of accuracy; solution time less than one minute on
Sun UltraSparc1 workstation.

• PDE’s from full equations solved with method of lines marching technique
embodied in Fortran 77 code on Sun UltraSparc1 workstation

– forty-nine spatial nodes

– second order centered spatial finite difference technique

– implicit time integration of ODE’s which result from discretization
using DLSODE package

– convergence of error norms consistent with order of numerical method

– solution time ten minutes

– extremely stiff near shear localization events



Thermal Explosion Theory Predictions
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Results from numerical solution of spatially homogeneous ordinary differential
equations away from asymptotic limits
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Comparison with Spatially Inhomogeneous Solutions
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induction/localization time predicted well by spatially homogeneous thermal
explosion theory
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Conclusions
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• Spatially homogeneous thermal explosion theory predicts ignition time ac-
curately, even in presence of shear-localization-inducing inhomogeneities.

• While strong experimental evidence exists detailing the importance of
localized hot spots in accelerating ignition in high explosives, the present
theory, confined to the shear initiation mechanism, indicates the shear
localization is a consequence, and not a cause, of an already imminent
reaction.

• Sensitivity analysis indicates ignition time is generally more sensitive to
changes in mechanical properties relative to changes in thermal proper-
ties.


