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Motivation

• Detailed finite rate kinetics critical in reactive fluid mechanics:

– Candle flames,

– Internal combustion engines,

– Atmospheric chemistry,

• Common detailed kinetic models are computationally expensive.

• Expense increases with

– number of species and reactions modeled (linear effect),

– stiffness–ratio of slow to fast time scales, (geometric effect).

• Fluid mechanics time scales: 10−5 s to 101 s.

• Reaction time scales: 10−11 s to 10−5 s.

• Reduced kinetics necessary given current computational resources.

• Adaptive discretization necessary for fine spatial structures.



Goals

• Implement robust new reduced kinetic method (Intrinsic Low
Dimensional Manifold-ILDM) of Maas and Pope (1992)

• Extend ILDM method to systems with time and space depen-
dency, correctly accounting for convection and diffusion

• Extend WAMR technique (Paolucci & Vasilyev) to combustion
systems,

• Couple WAMR and ILDM techniques.



Intrinsic Low-Dimensional Manifold Method (ILDM)

• Uses a formal dynamical systems approach,

• Does not require imposition of ad hoc partial equilibrium or
steady state assumptions,

• Fast time scale phenomena are systematically equilibrated,

• Slow time scale phenomena are resolved in time,

• n-species gives rise to a n-dimensional phase space (same as com-
position space) for isochoric, isothermal combustion in well stirred

reactors,

• Identifies m-dimensional subspaces (manifolds), m < n, embed-

ded within the n-dimensional phase space on which slow time

scale events evolve,

– Fast time scale events rapidly move to the manifold,

– Slow time scale events move on the manifold.

• Computation time reduced by factor of ∼ 10 for non-trivial com-
bustion problems; manifold gives much better roadmap to find

solution relative to general implicit solution techniques (Norris,

1998)



Formulation of ILDM’s
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• A well-stirred reactive system of form:
dx

dt
= F(x), x(0) = xo,

• Local linearization gives
dx̃

dt
= Fx · x̃,

• Use local Schur decomposition of the Jacobian matrix Fx to iden-
tify reaction time scales and fast and slow subspaces.

• ILDM defined algebraically by W · F(x) = 0, where W is the

fast subspace.



Wavelet Adaptive Multilevel Representation (WAMR) Technique

• See e.g. Vasilyev and Paolucci, “A Fast Adaptive Wavelet Collo-
cation Algorithm for Multidimensional PDEs,” J. Comp. Phys.,

1997,

• Basis functions have compact support,

• Well-suited for problems with widely disparate spatial scales,

• Good spatial and spectral localization, and fast (spectral) con-
vergence,

• Easy adaptable to steep gradients via adding collocation points,

• Spatial adaptation is automatic and dynamic to achieve pre-
scribed error tolerance.



Algorithm Description

• Approximate initial function using wavelet basis,

PJu(x) =
∑
k
u0,kφ0,k(x) +

J∑
j=1

∑
k
dj,kψj,k(x)

• Discard non-essential wavelets if amplitude below threshold value
(here we look only at P , T , u, and ρ, species could be included),

PJu(x) = uJ≥(x) + u
J
<(x)

uJ≥(x) =
∑
k
u0,kφ0,k(x) +

J∑
j=1

∑
k
dj,kψj,k(x), |dj,k| ≥ ε

uJ<(x) =
J∑
j=1

∑
k
dj,kψj,k(x), |dj,k| < ε

• Assign a collocation point to every essential wavelet,

• Establish a neighboring region of potentially essential wavelets,

• Discretize the spatial derivatives; five points used here (related
to order of wavelet family),

• Integrate in time; linearized trapezoidal method (implicit) used
here,

• Repeat



Ignition Delay in Premixed H2-O2

• Consider standard problem of Fedkiw, Merriman, and Osher, J.
Comp. Phys., 1996,

• Shock tube with premixed H2, O2, and Ar in 2/1/7 molar ratio,

• Initial inert shock propagating in tube,

• Reaction commences shortly after reflection off end wall,

• Detonation soon develops,

• Model assumptions

– One-dimensional,

– Mass, momentum, and energy diffusion,

– Nine species, thirty-seven reactions,

– Ideal gases with variable specific heats.



Compressible Reactive Navier-Stokes Equations for H2-O2 Problem

∂ρ

∂t
+

∂

∂x
(ρu) = 0, mass

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + P − τ) = 0, momentum

∂

∂t


ρ


e+ u2

2




+ ∂

∂x


ρu


e+ u2

2


+ u (P − τ) + q


 = 0, energy

∂

∂t
(ρYi)+

∂

∂x
(ρuYi + ji) =

M∑
j=1

ajT
αj exp

(−Ej
<T

)
νijMi

N∏
k=1

(
ρYk

Mk

)νkj
, species

P = ρ<T
N∑
i=1

Yi

Mi
, thermal equation of state

e =
N∑
i=1

Yi

(
hoi +

∫ T
To
cpi(T̂ )dT̂

)
− P

ρ
, caloric equation of state

τ =
4

3
µ
∂u

∂x
, Newtonian gas with Stokes’ assumption

ji = −ρ
N∑
j=1

Dij ∂Yj
∂x

, Fick’s law

q = −k ∂T
∂x
+
N∑
i=1

ji

(
hoi +

∫ T
To
cpi(T̂ )dT̂

)
augmented Fourier’s law.

N = 9 species: H2, O2, H, O, OH, H2O2, H2O, HO2, Ar

M = 37 reactions



Viscous H2 −O2 Ignition Delay with Wavelets and ILDM

• t = 195 µs, 300 collocation points, 15 wavelet levels

• ILDM gives nearly identical results as full chemistry

• Wavelet spatial discretization, explicit convection-diffusion time
stepping, implicit reaction time stepping (Strang splitting)

• Viscous shocks, induction zones, and entropy layers spatially
resolved!
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Viscous H2 −O2 Ignition Delay with Wavelets and ILDM

• t = 195 µs

• ILDM gives nearly identical results as full chemistry
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Post Reflection Entropy Layer?: Viscous Wavelet Results

• No significant entropy layer evident on macroscale after shock
reflection when resolved viscous terms considered,

• Inviscid codes with coarse gridding introduce a larger entropy
layer due to numerical diffusion,

• Unless suppressed, unphysically accelerates reaction rate.
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Post Reflection Entropy Layer: Viscous Wavelet Results

• small entropy layer evident on finer scale,

• temperature rise ∼ 5 K; dissipates quickly,

• inviscid calculations before adjustment give persistent tempera-
ture rise of ∼ 20 K
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Viscous H2 − O2 Ignition Delay with Wavelets
Global and Fine Scale Structures

• t = 230 µs
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Viscous H2 −O2 Ignition Delay with Wavelets,
Instantaneous Distributions of Collocation Points

• t = 180 µs, two-shock structure with consequent collocation
point distribution,

• t = 230 µs, one-shock structure with evolved collocation point
distribution.
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Conclusions

• Adaptive multilevel wavelet collocation method gives dramatic
spatial resolution in viscous one-dimensional H2/O2 detonations

with detailed kinetics; viscous shocks, entropy layers, and induc-

tion zones are resolved,

• Preliminary results on well-stirred systems indicate at least a ten-
fold increase in computational efficiency with use of intrinsic low

dimensional manifolds,

• Operator splitting allows straightforward implementation of ILDM
method in solving PDEs, while correctly accounting for convec-

tion and diffusion.


