## Resolution Matters: Issues in Computational

## Simulation of Detailed Kinetics Gas Phase

Combustion
Joseph M. Powers (powers@nd.edu) Samuel Paolucci (paolucci@nd.edu)

University of Notre Dame Notre Dame, Indiana
$58^{\text {th }}$ Annual Meeting of the APS DFD
Chicago, Illinois; 20 November 2005


UNIVERSITYOF NOTRE DAME

## Motivation

- Detailed kinetics models are widely used in detonation simulations.
- The finest length scale predicted by such models is usually not clarified and often not resolved.
- Tuning computational results to match experiments without first harmonizing with underlying mathematics renders predictions unreliable.
- See Powers and Paolucci, AIAA Journal, 2005.


## Model: Steady 1D Reactive Euler Equations

$$
\begin{gathered}
\rho u=\rho_{o} D \\
\rho u^{2}+p=\rho_{o} D^{2}+p_{o}, \\
e+\frac{u^{2}}{2}+\frac{p}{\rho}=e_{o}+\frac{D^{2}}{2}+\frac{p_{o}}{\rho_{o}}, \\
p=\rho \Re T \sum_{i=1}^{N} \frac{Y_{i}}{M_{i}}, \\
e=\sum_{i=1}^{N} Y_{i}\left(h_{i, f}^{o}+\int_{T_{o}}^{T} c_{p i}(\hat{T}) d \hat{T}-\frac{\Re T}{M_{i}}\right), \\
\frac{d Y_{i}}{d x}=\frac{M_{i}}{\rho_{o} D} \sum_{j=1}^{J} \nu_{i j} \alpha_{j} T^{\beta_{j}} e\left(\frac{-E_{j}}{\Re T}\right)(\underbrace{\prod_{k=1}^{N}\left(\frac{\rho Y_{k}}{M_{k}}\right)^{\nu_{k j}^{\prime}}}_{\text {forward }}-\underbrace{\left.\frac{1}{K_{j}^{c}} \prod_{k=1}^{N}\left(\frac{\rho Y_{k}}{M_{k}}\right)^{\nu_{k j}^{\prime \prime}}\right)}_{\text {reverse }})
\end{gathered}
$$

## Eigenvalue Analysis of Local Length Scales

Algebraic reduction yields

$$
\frac{d \mathbf{Y}}{d x}=\mathbf{f}(\mathbf{Y})
$$

Local behavior is modeled by

$$
\frac{d \mathbf{Y}}{d x}=\mathbf{J} \cdot\left(\mathbf{Y}-\mathbf{Y}^{*}\right)+\mathbf{b}, \quad \mathbf{Y}\left(x^{*}\right)=\mathbf{Y}^{*}
$$

whose solution is

$$
\mathbf{Y}(x)=\mathbf{Y}^{*}+\left(\mathbf{P} \cdot e^{\boldsymbol{\Lambda}\left(x-x^{*}\right)} \cdot \mathbf{P}^{-1}-\mathbf{I}\right) \cdot \mathbf{J}^{-1} \cdot \mathbf{b}
$$

Here, $\boldsymbol{\Lambda}$ has eigenvalues $\lambda_{i}$ of Jacobian $\mathbf{J}$ in its diagonal. Length scales given by

$$
\ell_{i}(x)=\frac{1}{\left|\lambda_{i}(x)\right|} .
$$

## Computational Methods

- A standard ODE solver (DLSODE) was used to integrate the equations.
- Standard IMSL subroutines were used to evaluate the local Jacobians and eigenvalues at every step.
- The Chemkin software package was used to evaluate kinetic rates and thermodynamic properties.
- Computation time was typically one minute on a 1 GHz HP Linux machine.


## Physical System

- Hydrogen-air detonation: $2 \mathrm{H}_{2}+\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}$.
- $N=9$ molecular species, $L=3$ atomic elements, $J=19$ reversible reactions.
- $p_{o}=1 \mathrm{~atm}$.
- $T_{o}=298 \mathrm{~K}$.
- Identical to system studied by both Shepherd (1986) and Mikolaitis (1987).


## Mole Fractions versus Distance

- significant evolution at fine length scales $x<$ $10^{-3} \mathrm{~cm}$.
- results agree with those of Shepherd.

Eigenvalue Analysis: Length Scale Evolution

- Finest length scale:
$2.3 \times 10^{-5} \mathrm{~cm}$.

- Coarsest length scale
$3.0 \times 10^{1} \mathrm{~cm}$.
- Finest length scale similar to that necessary for numerical stability of ODE solver.


## Numerical Stability



- Discretizations finer than finest physical length scale are numerically stable.
- Discretizations coarser than finest physical length scale are numerically unstable.


## Examination of Recently Published Results

| Reference | $\ell_{\text {ind }}(\mathrm{cm})$ | $\ell_{f}(\mathrm{~cm})$ | $\Delta x(\mathrm{~cm})$ | Under-resolution |
| :---: | :--- | :--- | :--- | :--- |
| Oran, et al., 1998 | $2 \times 10^{-1}$ | $2 \times 10^{-4}$ | $4 \times 10^{-3}$ | $2 \times 10^{1}$ |
| Jameson, et al., 1998 | $2 \times 10^{-2}$ | $5 \times 10^{-5}$ | $3 \times 10^{-3}$ | $6 \times 10^{1}$ |
| Hayashi, et al., 2002 | $2 \times 10^{-2}$ | $1 \times 10^{-5}$ | $5 \times 10^{-4}$ | $5 \times 10^{1}$ |
| Hu, et al., 2004 | $2 \times 10^{-1}$ | $2 \times 10^{-4}$ | $3 \times 10^{-3}$ | $2 \times 10^{1}$ |
| Powers, et al., 2001 | $2 \times 10^{-2}$ | $3 \times 10^{-5}$ | $8 \times 10^{-5}$ | $3 \times 10^{0}$ |
| Osher, et al., 1997 | $2 \times 10^{-2}$ | $3 \times 10^{-5}$ | $3 \times 10^{-2}$ | $1 \times 10^{3}$ |
| Merkle, et al., 2002 | $5 \times 10^{-3}$ | $8 \times 10^{-6}$ | $1 \times 10^{-2}$ | $1 \times 10^{3}$ |
| Sislian, et al., 1998 | $1 \times 10^{-1}$ | $2 \times 10^{-4}$ | $1 \times 10^{0}$ | $5 \times 10^{3}$ |
| Jeung, et al.,, 1998 | $2 \times 10^{-2}$ | $6 \times 10^{-7}$ | $6 \times 10^{-2}$ | $1 \times 10^{5}$ |

All are under-resolved, some severely.

## Conclusions

- Detonation calculations are often under-resolved, by as much as five orders of magnitude.
- Equilibrium properties are insensitive to resolution, while transient phenomena can be sensitive.
- Sensitivity of results to resolution is not known a priori.
- Numerical viscosity stabilizes instabilities.
- For a repeatable scientific calculation of detonation, the finest physical scales must be resolved.


## Moral

You either do detailed kinetics with the proper resolution,

or

you are fooling yourself and others, in which case you should stick with reduced kinetics!

## Detailed Kinetics Model

| $j$ | Reaction | $A_{j}$ | $\beta_{j}$ | $E_{j}$ |
| :--- | :--- | :--- | ---: | ---: |
| 1 | $H_{2}+O_{2} \rightleftharpoons O H+O H$ | $1.70 \times 10^{13}$ | 0.00 | 47780 |
| 2 | $O H+H_{2} \rightleftharpoons H_{2} O+H$ | $1.17 \times 10^{9}$ | 1.30 | 3626 |
| 3 | $H+O_{2} \rightleftharpoons O H+O$ | $5.13 \times 10^{16}$ | -0.82 | 16507 |
| 4 | $O+H_{2} \rightleftharpoons O H+H$ | $1.80 \times 10^{10}$ | 1.00 | 8826 |
| 5 | $H+O_{2}+M \rightleftharpoons H O_{2}+M$ | $2.10 \times 10^{18}$ | -1.00 | 0 |
| 6 | $H+O_{2}+O_{2} \rightleftharpoons H O_{2}+O_{2}$ | $6.70 \times 10^{19}$ | -1.42 | 0 |
| 7 | $H+O_{2}+N_{2} \rightleftharpoons H O_{2}+N_{2}$ | $6.70 \times 10^{19}$ | -1.42 | 0 |
| 8 | $O H+H O_{2} \rightleftharpoons H_{2} O+O_{2}$ | $5.00 \times 10^{13}$ | 0.00 | 1000 |
| 9 | $H+H O_{2} \rightleftharpoons O H+O H$ | $2.50 \times 10^{14}$ | 0.00 | 1900 |
| 10 | $O+H O_{2} \rightleftharpoons O_{2}+O H$ | $4.80 \times 10^{13}$ | 0.00 | 1000 |
| 11 | $O H+O H \rightleftharpoons O+H_{2} O$ | $6.00 \times 10^{8}$ | 1.30 | 0 |
| 12 | $H_{2}+M \rightleftharpoons H+H+M$ | $2.23 \times 10^{12}$ | 0.50 | 92600 |
| 13 | $O_{2}+M \rightleftharpoons O+O+M$ | $1.85 \times 10^{11}$ | 0.50 | 95560 |
| 14 | $H+O H+M \rightleftharpoons H_{2} O+M$ | $7.50 \times 10^{23}$ | -2.60 | 0 |
| 15 | $H+H O_{2} \rightleftharpoons H_{2}+O_{2}$ | $2.50 \times 10^{13}$ | 0.00 | 700 |
| 16 | $H O_{2}+H O_{2} \rightleftharpoons H_{2} O_{2}+O_{2}$ | $2.00 \times 10^{12}$ | 0.00 | 0 |
| 17 | $H_{2} O_{2}+M \rightleftharpoons O H+O H+M$ | $1.30 \times 10^{17}$ | 0.00 | 45500 |
| 18 | $H_{2} O_{2}+H \rightleftharpoons H O_{2}+H_{2}$ | $1.60 \times 10^{12}$ | 0.00 | 3800 |
| 19 | $H_{2} O_{2}+O H \rightleftharpoons H_{2} O+H O_{2}$ | $1.00 \times 10^{13}$ | 0.00 | 1800 |

## Temperature Profile



- Temperature flat in the post-shock induction zone $0<x<$ $2.6 \times 10^{-2} \mathrm{~cm}$.
- Thermal explosion followed by relaxation to equilibrium at
$x \sim 10^{0} \mathrm{~cm}$.


## Verification: Comparison with Mikolaitis



- Lagrangian calculation allows direct comparison with Mikolaitis' results.
- agreement very good.


## Grid Convergence

- Finest length scale must be resolved to converge at proper order.
- Results are converging at proper order for first and second order discretizations.

