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Outline

• Motivation

• Wavelet Adaptive Multilevel Representation (WAMR) technique

(Paolucci & Vasilyev, 1997, Journal of Computational Physics)

for spatial discretization

• Intrinsic Low Dimensional Manifold (ILDM) technique (Maas &

Pope, 1992, Combustion and Flame) for reactive source terms

• One-dimensional results: viscous detonation in H2/O2/Ar sys-

tem (Singh, Rastigejev, Paolucci, & Powers, 2001, Combustion

Theory and Modeling), and laminar ozone flame (Singh, Powers,

& Paolucci, ICDERS, 2001)

• Two-dimensional results: lid-driven fluid in rectangular cavity at

high Reynolds number

• Conclusions



General Motivation

• Combustion problems are among the most demanding computa-

tional problems solved in science and engineering (auto, jet, and

rocket engines, atmospheric chemistry, fire safety,...)

• Combustion characterized by phenomena evolving on widely dis-

parate space (1 nm to 10 m) and time (1 ns to 10 s) scales.

• Disparity of scales generated by

– geometry

– heterogeneities in material properties

– diffusive boundary layers

– fine and coarse reaction zones

– interacting shock waves

– intrinsic non-linear effects

• Solutions

– faster and larger compuational hardware

– more efficient software

• Our focus: adaptive methods suited for parallel architectures



Compressible Reactive Navier-Stokes Equations
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N species, L elements, J reactions

4N + L + 7 equations in 4N + L + 7 unknowns



Operator Splitting Technique

• Equations are of form

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t))︸ ︷︷ ︸

convection/diffusion

= g(q(x, t))︸ ︷︷ ︸
reaction

, q, f ,g ∈ <N+2.

where

q =


ρ, ρu, ρ


e +

u2

2


 , ρyl, ρYi



T

.

• Splitting

1. Inert convection-diffusion step:

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = 0,

d

dt
qi(t) = −∆xf(qi(t)) WAMR.

∆x is any spatial discretization operator, here a wavelet oper-

ator.

2. Reaction source term step:

∂

∂t
q(x, t) = g(q(x, t)),

d

dt
qi(t) = g(qi(t)) ILDM.



Wavelet Adaptive Multilevel Representation (WAMR) Technique

• Summary of standard spatial discretization techniques

– Finite difference-good spatial localization, poor spectral local-

ization, and slow convergence,

– Finite element- good spatial localization, poor spectral local-

ization, and slow convergence,

– Spectral–good spectral localization, poor spatial localization,

but fast convergence.

• Wavelet technique

– See e.g. Vasilyev and Paolucci, “A Fast Adaptive Wavelet Col-

location Algorithm for Multidimensional PDEs,” J. Comp.

Phys., 1997,

– Basis functions have compact support,

– Well-suited for problems with widely disparate spatial scales,

– Good spatial and spectral localization, and fast (spectral) con-

vergence,

– Easy adaptable to steep gradients via adding collocation points,

– Spatial adaptation is automatic and dynamic to achieve pre-

scribed error tolerance.



Wavelet Basis Functions
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Left Boundary Wavelets

Interior Wavelet

• Boundary-modified Daubechies autocorrelation functions and in-

terior Daubechies autocorrelation function of order four

• Scaling function

φj,k(x) = φ(2jx− k)

• Definition of the wavelet function on the first level

ψ1,0(x) = φ(2x− 1)

• Definition of the wavelet function on j level

ψj,k+1(x) = ψ(2j−1x− k)



Algorithm Description

• Approximate initial function using wavelet basis,

PJu(x) =
∑
k
u0,kφ0,k(x) +

J∑
j=1

∑
k
dj,kψj,k(x)

• Discard non-essential wavelets if amplitude below threshold value

(here we look only at P , T , u, and ρ, species could be included),

PJu(x) = uJ≥(x) + uJ<(x)

uJ≥(x) =
∑
k
u0,kφ0,k(x) +

J∑
j=1

∑
k
dj,kψj,k(x), |dj,k| ≥ ε

uJ<(x) =
J∑
j=1

∑
k
dj,kψj,k(x), |dj,k| < ε

• Assign a collocation point to every essential wavelet,

• Establish a neighboring region of potentially essential wavelets,

• Discretize the spatial derivatives; five points used here (related

to order of wavelet family),

• Integrate in time; linearized trapezoidal method (implicit) used

here,

• Repeat



Sample Wavelet Approximation to Arbitrary Function
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• Function shown has large and small length scale variation,

• Wavelets concentrated in regions of steep gradients.



Intrinsic Low-Dimensional Manifold Method (ILDM)

• Uses a dynamical systems approach,

• Most appropriate for spatially homogeneous systems (ODEs)

• Does not require imposition of ad hoc partial equilibrium or

steady state assumptions,

• Fast time scale phenomena are systematically equilibrated,

• Slow time scale phenomena are resolved in time,

• Computation time reduced by factor of ∼ 3 for non-trivial com-

bustion problem considered here; manifold gives much better

roadmap to find solution relative to general implicit solution tech-

niques (Singh, et al., 2001)

• Speed up factor depends on

– initial conditions,

– stiffness ratio

– dimension of ILDM



Simplest Example

dx

dt
= −10x, x(0) = xo,

dy

dt
= −y, y(0) = yo.

• Stable equilibrium at (x, y) = (0,0); stiffness ratio = 10.

• ILDM is x = 0
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• Parameterization of manifold: x(s) = 0; y(s) = s.

dy

dt
=
dy

ds

ds

dt
, chain rule

−y(s) =
dy

ds

ds

dt
, substitute from ODE and manifold

−s = (1)
ds

dt
, no longer stiff!

s = soe
−t,

x(t) = 0; y(t) = soe
−t.

• Projection onto manifold for so, induces small phase error.



ILDM Implementation in Operator Splitting

• Form of equations in source term step:

d

dt




ρ

ρu

ρ
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2
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=


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0

0

0

0

ω̇iMi




.

l = 1, . . . , L− 1, i = 1, . . . , N − L.

• Equations reduce to

ρ = ρo, u = uo, e = eo, yl = ylo,

dYi
dt

=
ω̇iMi

ρo
, i = 1, . . . , N − L

• ω̇i has dependency on ρ, e, yl, and Yi

• ODEs for Yi are stiff, usually solved with implicit methods.

• ODEs for Yi can be attacked with manifold methods to remove

stiffness with ILDM with ρ, e, yl, . . . , yL−1 parameterization.



Implementation of ILDMs with convection-diffusion

and operator splitting

• To minimize phase error, must integrate full equations until suf-

ficiently close to ILDM

• When near ILDM, M slow equations are integrated, other vari-

ables found by table lookup

• Convection-diffusion step applied to all variables perturbs sys-

tem from ILDM

• In next reaction step, project to ILDM at different value of ρ, e,

y1, . . . , yN−1.

Projection onto
manifold at a different statePerturbation off the 

manifold due to
convection and
diffusion

ILDM (ρ  , e  , y    ..., y      )1 1

ILDM (ρ  , e  , y     ,..., y      )2 2

Y

Y

A

B

1, 2 L-1,2

1,1 L-1,1



Formulation of General ILDMs

• A spatially homogeneous adiabatic, isochoric chemically reactive

system of N species in L elements is modeled by a set of non-

linear ordinary differential equations:

dx

dt
= F(x), x(0) = xo,

x : species concentration; x ∈ <N−L

• Equilibrium points defined by

x = xeq such that F(xeq) = 0.

• Consider a system near equilibrium (the argument can and must

be extended for systems away from equilibrium) with x̃ = x−xeq.

• Linearization gives
dx̃

dt
= Fx · x̃,

where Fx is a constant Jacobian matrix.

• Schur decompose the Jacobian matrix:

Fx = Q · U ·QT

Q =




...
...

...

q1 q2 · · · qN−L

...
...

...


 , U =




λ1 u1,2 · · · u1,N−L

0 λ2 · · · u2,N−L

0 · · · . . .
...

0 · · · 0 λN−L


 , QT =




· · · qT
1 · · ·

· · · qT
2 · · ·
...

· · · qT
N−L · · ·






Formulation of General Manifolds (cont.)

• Q is an orthogonal matrix with real Schur vectors qi in its columns.

• U is an upper triangular matrix with eigenvalues of Fx on its

diagonal, sometimes placed in order of decreasing magnitude.

• The Schur vectors qi form an orthonormal basis which spans the

phase space, <N−L.

• We then define M slow time scales, M < N − L.

• Next define a non-square matrix W which has in its rows the

Schur vectors associated with the fast time scales:

W =




· · · · · · qTM+1 · · · · · ·
· · · · · · qTM+2 · · · · · ·

...

· · · · · · qTN−L · · · · · ·



.

• Letting the fast time scale events equilibrate defines the manifold:

W · F(x) = 0.



Sample ILDM for H2/O2/Ar

• Based on N = 9, J = 37 mechanism of Maas and Warnatz,

• Projection in YH2O, YH2O2 plane and YH2O, YH2O2, e space

• Adiabatic (e = 8×105 J/kg), isochoric (ρ = 5.0×10−4 kg/m3),

yH = 0.01277, yO = 0.10137, yAr = 0.88586,

• We can get e.g. p (ρ, e, YH2O) , T (ρ, e, YH2O) , YH (ρ, e, YH2O) , . . .

• Linear interpolation used for points not in table,

• Captures ∼ 0.1 µs reaction events.
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Ignition Delay in Premixed H2/O2/Ar

• Consider standard problem of Fedkiw, Merriman, and Osher, J.

Comp. Phys., 1996,

• Shock tube with premixed H2, O2, and Ar in 2/1/7 molar ratio,

• Initial inert shock propagating in tube,

• Reaction commences shortly after reflection off end wall,

• Detonation soon develops,

• Model assumptions

– One-dimensional,

– Mass, momentum, and energy diffusion,

– Nine species, thirty-seven reactions,

– Ideal gases with variable specific heats.



Viscous H2 −O2 Ignition Delay with Wavelets and ILDM

• t = 195 µs, 300 collocation points, 15 wavelet scale levels

• ILDM gives nearly identical results as full chemistry

• WAMR spatial discretization, implicit linear trapezoidal convection-

diffusion time stepping, explicit (ILDM)/implicit (non-ILDM) re-

action time stepping

• Viscous shocks, inductions zones, and entropy layers spatially

resolved!
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Viscous H2 −O2 Ignition Delay with Wavelets and ILDM

• t = 195 µs

• ILDM gives nearly identical results as full chemistry
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Viscous H2 − O2 Ignition Delay with Wavelets

Global and Fine Scale Structures

• t = 230 µs, Induction zone length: ∼ 470 µm, Viscous shock

thickness: ∼ 50 µm (should use smaller µ),

• No significant reaction in viscous shock zone.
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Viscous H2 −O2 Ignition Delay with Wavelets,

Instantaneous Distributions of Collocation Points

• t = 180 µs, two-shock structure with consequent collocation

point distribution,

• t = 230 µs, one-shock structure with evolved collocation point

distribution.
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Laminar Ozone Flame with Improved ILDM

• One dimensional, low Mach number limit

• see Margolis, J. Comp. Phys., 1978

• Classical ILDM for ODEs only

• Project PDEs onto fast and slow bases defined by ILDM.

• Solve slow PDEs and new elliptic equation: Elliptic Convection-

Diffusion Corrector, ECDC
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Laminar Ozone Flame with Improved ILDM: Phase Error

• ECDC gives improved accuracy in wave speed predictions relative

to Maas-Pope projection.

• ECDC has stronger coupling with full equations.

• ECDC analagous to elliptic equation for pressure in incompress-

ible Navier-Stokes, where fast acoustics have been filtered.
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Laminar Ozone Flame with Improved ILDM: Amplitude Error

• ECDC gives improved accuracy in amplitude predictions at long

time relative to Maas-Pope projection.
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Lid-Driven Fluid in Rectangular Cavity

• Standard two-dimensional test problem (Ghia, et al., J. Comp.

Phys., 1982)

• Consider incompressible Navier-Stokes equations

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re


∂

2u

∂x2
+
∂2u

∂y2


 ,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re


∂

2v

∂x2
+
∂2v

∂y2


 .

• Project dependent variables onto wavelet basis localized in two-

dimensions.

• Fast Poisson solver developed for resulting equation for pressure.

• Dynamic memory allocation utilized for variable storage require-

ments.

• Adaptive nature of the method requires a robust computational

technique for computing derivatives.

• Wavelets which are physically close may be far removed in mem-

ory storage.

• Method prepared to handle a wide variety of stencil combinations.



Velocity Vector Field, Re = 10000, t = 4

• Re = 10000 equivalent to highest Re for this problem in the

published literature with long time steady results.

• Initial transients have not yet relaxed here.
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Velocity Vector Field, Re = 10000, t = 12
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Velocity Vector Field, Re = 10000, t = 100
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Velocity Vector Field, Re = 3200

• Long time results t = 100; initial transients have relaxed.

• Wavelets only present in regions of steep gradients.; ε = 0.01.

• Five levels of wavelets: coarsest 16 × 16, finest 257× 257; equiv-

alent to Ghia’s uniform grid.

• Results are more accurate than Ghia, as a higher order stencil

was used on an equivalent grid.
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Comparison with Ghia’s Results for u, Re = 3200

• Midplane predictions of long-time u velocity agree well with Ghia’s

predictions.
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Comparison with Ghia’s Results for v, Re = 3200

• Midplane predictions of long-time v velocity agree well with Ghia’s

predictions.
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Conclusions

• The WAMR method gives dramatic spatial resolution in viscous

one-dimensional H2/O2/Ar detonations with detailed kinetics;

viscous shocks, entropy layers, and induction zones are resolved,

• The ILDM method, coupled appropriate use of full integration,

with operator spitting accurately recovers most results of full

chemistry with decrease (factor of three for our case) in com-

putational time,

• The ILDM method can be made more accurate at roughly the

same computational cost by solving an elliptic equation for ac-

counting for effects of convection and diffusion (ECDC)

• The WAMR method can be extended to multiple dimensions and

can enable extremely detailed and accurate results on a challeng-

ing two-dimensional test problem.

• The extension to three-dimensional compressible reactive flows

within complex geometries is underway.


