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Motivation

e Computational tools are critical in design of aerospace

vehicles which employ high speed reactive flow.

e Comparing computational predictions with those of
exact solutions in grid resolution studies is a robust

verification.

e \We develop a new exact solution and employ it to verify

a modern shock-capturing reactive flow algorithm for

flows with an immersed boundary.




Verification and Validation

e verification: solving the equations right.
e validation: solving the right equations.

® Focus here is exclusively on verification.

e Limiting assumptions necessary for exact solution pre-

clude meaningful validation exercise.

e Verification and validation always necessary but never

sufficient: finite uncertainty must be tolerated.




Partial Review of Obligue Detonations

e Samaras, Can. J. Research , 1948.
® Gross, AIAA J., 1963.

® Lee, AIAA J., 1966.

e Pratt, J. Propul. Power, 1991.

e Powers, et al., AIAA J., Phys. Fluids, Shock Waves,
1992-96.




Obligue Detonation Schematic

e Straight shock.

e Curved wedge.

e Orthogonal coordinate

system aligned with

shock.




Model: Reactive Euler Equations

e two-dimensional,
e steady,
® |nviscid,

® [rrotational,

® one step kinetics with zero activation energy,

e calorically perfect ideal gases with identical molecular

masses and specific heats.




Model: Reactive Euler PDEs
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Model Reductions: PDEs —ODESs

Assume no Y variation, so
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Model Reductions: ODEs
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ZND reaction zone structure ODE supplemented with

extended Rankine-Hugoniot algebraic conditions.




Model Reductions: Inversion of Algebraic Relations
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Reaction Zone Structure Solution
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Parametric Values

Independent Parameter Units

R J/kg/K
Q 1/s

rad

3
1

300000
131300/363




Reaction Zone Structure Normal to Shock




Exact Solution: Streamlines

straight oblique
shock, B=1/4 )
e Curved  streamlines

identical to wedge

contour.

e Streamline curvature

curved approaches zero as

wedge

reaction completes.
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High Mach Number Limit Solution
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Low Heat Release Limit

Effects of heat release are better represented following a
detailed asymptotic analysis, which yields
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Exact versus Asymptotic Solutions

e High Mach number

exact solution
low heat release limit
high Mach number limit

limit solution agrees

poorly.

® Low heat release limit
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solution agrees well.




Verification of Modern Shock Capturing Algorithm

e Algorithm of Xu, Aslam, and Stewart, 1997, CTM.
e Uniform Cartesian grid.

e Embedded internal boundary with level set represen-

tation.

e Nominally fifth order weighted essentially non-oscillatory
(WENO) discretization.

e Non-decomposition based Lax-Friedrichs solver.

e Third order Runge-Kutta time integration.




Exact versus Numerical Solutions

exact
numerical

AT P= 2.6 kg/m
7 j<+—p=2.3kg/m

3
3

3

< p=29kg/m

J«—p=2.0kg/m?

e 2006 X 256 uniform

numerical grid.

® good agreement in pic-

ture norm.

® numerical solution sta-
ble.




Iterative Convergence to Steady State: Various Grids

e Coarse grids relax
L, (kg/m) _ _ _
10 | | | | quickly; fine grids relax

64 x 64 -

128 x 128 =
256 X 256 ~ SIOWIy
512 x 512 = 1

1024 x 1024 -

e All grids Iteratively

converge to steady

‘ ‘ ‘ ‘ t(s
0 0.002 0.004 0.006 0.008 0.01 (©) State

® |terative convergence
Is distinct from grid

convergence.




Grid Convergence

L, (kg/m)
1

e Convergence rate:

O (A$0.779)_

e Both shock capturing

and embedded bound-

ary induce the low con-

vergence rate.




Conclusions

e New exact solution for two-dimensional steady detona-

tion found.
e Excellent verification tool for computational methods.
e Numerical solutions are stable.

e Shock capturing and embedded boundary induce low
order convergence rates even for high order discretiza-

tions.

e Common practice of claiming high order convergence

rates without verification should be stopped.




