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Motivation

• Detailed kinetics models are widely used in detonation

simulations.

• The finest length scale predicted by such models is

usually not clarified and often not resolved.

• Tuning computational results to match experiments

without first harmonizing with underlying mathematics

renders predictions unreliable.



Partial Review

• Westbrook, Combust. Sci. Tech., 1982.

• Shepherd, Dynamics of Explosions, 1986.

• Mikolaitis, Combust. Sci. Tech., 1987.

• Oran, et al., Combust. Flame, 1998.

• Paolucci, et al. Combust. Theory Model., 2001.

• Hayashi, et al., Proc. Combust. Institute, 2002.
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Model: Reactive Euler Equations

• one-dimensional

• steady

• inviscid

• detailed Arrhenius kinetics

• calorically imperfect ideal gas mixture



Model: Reactive Euler Equations

ρu = ρoD,

ρu2 + p = ρoD
2 + po,

e +
u2

2
+

p

ρ
= eo +

D2

2
+

po

ρo

,

dYi

dx
= fi ≡

ω̇iMi

ρoD
.

Supplemented by state equations and the law of mass

action.



Reduced Model

Algebraic reductions lead to a final form of

dYi

dx
= fi(Y1, . . . , YN−L)

with

• N : number of molecular species

• L: number of atomic elements



Eigenvalue Analysis of Local Length Scales

Local behavior is modelled by

dY

dx
= J · (Y − Y

∗) + b, Y(x∗) = Y
∗,

whose solution has the form

Y(x) = Y
∗ +

(

P · eΛ(x−x
∗) · P−1 − I

)

· J−1 · b.

Here Λ has eigenvalues λi of Jacobian J in its diagonal.

The length scales are given by

ℓi(x) =
1

|λi(x)|
.



Computational Methods

• A standard ODE solver (DLSODE) was used to inte-

grate the equations.

• Standard IMSL subroutines were used to evaluate the

local Jacobians and eigenvalues at every step.

• The Chemkin software package was used to evaluate

kinetic rates and thermodynamic properties.

• Computation time was typically two minutes on a

900 MHz Sun Blade 1000.



Physical System

• Hydrogen-air detonation: 2H2 + O2 + 3.76N2.

• N = 9 molecular species, L = 3 atomic elements,

J = 19 reversible reactions.

• po = 1 atm.

• To = 298 K .

• Identical to system studied by both Shepherd (1986)

and Mikolaitis (1987).



Detailed Kinetics Model
j Reaction Aj βj Ej

1 H2 + O2
⇀↽ OH + OH 1.70 × 1013 0.00 47780

2 OH + H2
⇀↽ H2O + H 1.17 × 109 1.30 3626

3 H + O2
⇀↽ OH + O 5.13 × 1016 −0.82 16507

4 O + H2
⇀↽ OH + H 1.80 × 1010 1.00 8826

5 H + O2 + M ⇀↽ HO2 + M 2.10 × 1018 −1.00 0

6 H + O2 + O2
⇀↽ HO2 + O2 6.70 × 1019 −1.42 0

7 H + O2 + N2
⇀↽ HO2 + N2 6.70 × 1019 −1.42 0

8 OH + HO2
⇀↽ H2O + O2 5.00 × 1013 0.00 1000

9 H + HO2
⇀↽ OH + OH 2.50 × 1014 0.00 1900

10 O + HO2
⇀↽ O2 + OH 4.80 × 1013 0.00 1000

11 OH + OH ⇀↽ O + H2O 6.00 × 108 1.30 0

12 H2 + M ⇀↽ H + H + M 2.23 × 1012 0.50 92600

13 O2 + M ⇀↽ O + O + M 1.85 × 1011 0.50 95560

14 H + OH + M ⇀↽ H2O + M 7.50 × 1023 −2.60 0

15 H + HO2
⇀↽ H2 + O2 2.50 × 1013 0.00 700

16 HO2 + HO2
⇀↽ H2O2 + O2 2.00 × 1012 0.00 0

17 H2O2 + M ⇀↽ OH + OH + M 1.30 × 1017 0.00 45500

18 H2O2 + H ⇀↽ HO2 + H2 1.60 × 1012 0.00 3800

19 H2O2 + OH ⇀↽ H2O + HO2 1.00 × 1013 0.00 1800



Mole Fractions versus Distance
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• significant evolution at

fine length scales x <

10−3 cm.

• results agree with

those of Shepherd.



Temperature Profile
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• Temperature flat in the

post-shock induction zone

0 < x < 2.6 × 10−2 cm.

• Thermal explosion followed

by relaxation to equilibrium

at x ∼ 100 cm.



Eigenvalue Analysis: Length Scale Evolution
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• Finest length scale:

2.3 × 10−5 cm.

• Coarsest length scale

3.0 × 101 cm.

• Finest length scale similar

to that necessary for

numerical stability of ODE

solver.



Influence of Initial Pressure
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• Induction zone length and

finest length scale are

sensitive to initial pressure.

• Finest length scale three

orders of magnitude

smaller than induction

zone length.



Verification: Comparison with Mikolaitis
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• Lagrangian calculation

allows direct comparison

with Mikolaitis’ results.

• agreement very good.



Grid Convergence
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• Finest length scale must

be resolved to converge at

proper order.

• Results are converging at

proper order for first and

second order

discretizations.



Numerical Stability
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• Discretizations finer than

finest physical length scale are

numerically stable.

• Discretizations coarser than

finest physical length scale are

numerically unstable.



Examination of Recently Published Results

Ref. ℓind (cm) ℓf (cm) ∆x (cm)

Oran, et al., 1998 1.47× 10−1 2.17× 10−4 3.88× 10−3

Jameson, et al., 1998 2.35× 10−2 4.74× 10−5 3.20× 10−3

Hayashi, et al., 2002 1.50× 10−2 1.23× 10−5 5.00× 10−4

Hu, et al., 2004 1.47× 10−1 2.17× 10−4 2.50× 10−3

Powers, et al., 2001 1.54× 10−2 2.76× 10−5 8.14× 10−5

Fedkiw, et al., 1997 1.54× 10−2 2.76× 10−5 3.00× 10−2

Ebrahimi and Merkle, 2002 5.30× 10−3 7.48× 10−6 1.00× 10−2

Sislian, et al., 1998 1.38× 10−1 2.23× 10−4 1.00× 100

Jeung, et al., 1998 1.80× 10−2 5.61× 10−7 5.94× 10−2

All are under-resolved, some severely.



Conclusions

• Detonation calculations are often under-resolved, by

as much as four orders of magnitude.

• Equilibrium properties are insensitive to resolution,

while transient phenomena can be sensitive.

• Sensitivity of results to resolution is not known a priori.

• Numerical viscosity stabilizes instabilities.

• For a repeatable scientific calculation of detonation,

the finest physical scales must be resolved.



Moral

You either do detailed kinetics with the

proper resolution,

or

you are fooling yourself and others, in

which case you should stick with

reduced kinetics!


