Accurate Estimates of Fine Scale Reaction Zone

Thicknesses in Gas Phase Detonations

Joseph M. Powers (powers@nd.edu) Samuel Paolucci (paolucci@nd.edu) University of Notre Dame Notre Dame, Indiana

43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada

10-13 January 2005

Motivation

- Detailed kinetics models are widely used in detonation simulations.
- The finest length scale predicted by such models is usually not clarified and often not resolved.
- Tuning computational results to match experiments without first harmonizing with underlying mathematics renders predictions unreliable.

Partial Review

- Westbrook, Combust. Sci. Tech., 1982.
- Shepherd, Dynamics of Explosions, 1986.
- Mikolaitis, Combust. Sci. Tech., 1987.
- Oran, et al., Combust. Flame, 1998.
- Paolucci, et al. Combust. Theory Model., 2001.
- Hayashi, et al., Proc. Combust. Institute, 2002.
- Law, et al., J. Propul. Power, 2003.
- Powers and Paolucci, AIAA Journal, to appear.

Model: Reactive Euler Equations

- one-dimensional
- steady
- inviscid
- detailed Arrhenius kinetics
- calorically imperfect ideal gas mixture

Model: Reactive Euler Equations

Supplemented by state equations and the law of mass action.

Reduced Model

Algebraic reductions lead to a final form of

$$\frac{dY_i}{dx} = f_i(Y_1, \dots, Y_{N-L})$$

with

- $\bullet~N$: number of molecular species
- *L*: number of atomic elements

Eigenvalue Analysis of Local Length Scales

Local behavior is modelled by

$$\frac{d\mathbf{Y}}{dx} = \mathbf{J} \cdot (\mathbf{Y} - \mathbf{Y}^*) + \mathbf{b}, \qquad \mathbf{Y}(x^*) = \mathbf{Y}^*,$$

whose solution has the form

$$\mathbf{Y}(x) = \mathbf{Y}^* + \left(\mathbf{P} \cdot e^{\mathbf{\Lambda}(x - x^*)} \cdot \mathbf{P}^{-1} - \mathbf{I}\right) \cdot \mathbf{J}^{-1} \cdot \mathbf{b}.$$

Here Λ has eigenvalues λ_i of Jacobian ${f J}$ in its diagonal. The length scales are given by

$$\ell_i(x) = \frac{1}{|\lambda_i(x)|}.$$

Computational Methods

- A standard ODE solver (DLSODE) was used to integrate the equations.
- Standard IMSL subroutines were used to evaluate the local Jacobians and eigenvalues at every step.
- The Chemkin software package was used to evaluate kinetic rates and thermodynamic properties.
- Computation time was typically two minutes on a $900 \ MHz$ Sun Blade 1000.

Physical System

- Hydrogen-air detonation: $2H_2 + O_2 + 3.76N_2$.
- N = 9 molecular species, L = 3 atomic elements,
 - J = 19 reversible reactions.
- $p_o = 1 atm$.
- $T_o = 298 K$.
- Identical to system studied by both Shepherd (1986) and Mikolaitis (1987).

j	Reaction	A_{j}	eta_j	E_{j}
1	$H_2 + O_2 \rightleftharpoons OH + OH$	1.70×10^{13}	0.00	47780
2	$OH + H_2 \rightleftharpoons H_2O + H$	1.17×10^{9}	1.30	3626
3	$H + O_2 \rightleftharpoons OH + O$	5.13×10^{16}	-0.82	16507
4	$O + H_2 \rightleftharpoons OH + H$	1.80×10^{10}	1.00	8826
5	$H + O_2 + M \rightleftharpoons HO_2 + M$	2.10×10^{18}	-1.00	0
6	$H + O_2 + O_2 \rightleftharpoons HO_2 + O_2$	6.70×10^{19}	-1.42	0
7	$H + O_2 + N_2 \rightleftharpoons HO_2 + N_2$	6.70×10^{19}	-1.42	0
8	$OH + HO_2 \rightleftharpoons H_2O + O_2$	5.00×10^{13}	0.00	1000
9	$H + HO_2 \rightleftharpoons OH + OH$	2.50×10^{14}	0.00	1900
10	$O + HO_2 \rightleftharpoons O_2 + OH$	4.80×10^{13}	0.00	1000
11	$OH + OH \rightleftharpoons O + H_2O$	6.00×10^{8}	1.30	0
12	$H_2 + M \rightleftharpoons H + H + M$	2.23×10^{12}	0.50	92600
13	$O_2 + M \rightleftharpoons O + O + M$	1.85×10^{11}	0.50	95560
14	$H + OH + M \rightleftharpoons H_2O + M$	7.50×10^{23}	-2.60	0
15	$H + HO_2 \rightleftharpoons H_2 + O_2$	2.50×10^{13}	0.00	700
16	$HO_2 + HO_2 \rightleftharpoons H_2O_2 + O_2$	2.00×10^{12}	0.00	0
17	$H_2O_2 + M \rightleftharpoons OH + OH + M$	1.30×10^{17}	0.00	45500
18	$H_2O_2 + H \rightleftharpoons HO_2 + H_2$	1.60×10^{12}	0.00	3800
19	$H_2O_2 + OH \rightleftharpoons H_2O + HO_2$	1.00×10^{13}	0.00	1800

Detailed Kinetics Model

Mole Fractions versus Distance

- significant evolution at fine length scales $x < 10^{-3} cm$.
- results agree with those of Shepherd.

Temperature Profile

- Temperature flat in the post-shock induction zone $0 < x < 2.6 \times 10^{-2} \ cm.$
- Thermal explosion followed by relaxation to equilibrium at $x \sim 10^0 \ cm$.

Influence of Initial Pressure

- Induction zone length and finest length scale are sensitive to initial pressure.
- Finest length scale three orders of magnitude smaller than induction zone length.

Grid Convergence

- Finest length scale must be resolved to converge at proper order.
- Results are converging at proper order for first and second order discretizations.

Numerical Stability

- Discretizations finer than finest physical length scale are numerically stable.
- Discretizations coarser than finest physical length scale are numerically unstable.

Examination of Recently Published Results

Ref.	$\ell_{ind}~(cm)$	$\ell_{f}\ (cm)$	$\Delta x \ (cm)$
Oran, <i>et al.</i> , 1998	1.47×10^{-1}	2.17×10^{-4}	3.88×10^{-3}
Jameson, <i>et al.</i> , 1998	2.35×10^{-2}	4.74×10^{-5}	3.20×10^{-3}
Hayashi, <i>et al.</i> , 2002	1.50×10^{-2}	1.23×10^{-5}	5.00×10^{-4}
Hu, <i>et al.</i> , 2004	1.47×10^{-1}	2.17×10^{-4}	2.50×10^{-3}
Powers, <i>et al.</i> , 2001	1.54×10^{-2}	2.76×10^{-5}	8.14×10^{-5}
Fedkiw, <i>et al.</i> , 1997	1.54×10^{-2}	2.76×10^{-5}	3.00×10^{-2}
Ebrahimi and Merkle, 2002	5.30×10^{-3}	7.48×10^{-6}	1.00×10^{-2}
Sislian, <i>et al.</i> , 1998	1.38×10^{-1}	2.23×10^{-4}	1.00×10^0
Jeung, <i>et al.</i> , 1998	1.80×10^{-2}	5.61×10^{-7}	5.94×10^{-2}

All are under-resolved, some severely.

Conclusions

- Detonation calculations are often under-resolved, by as much as four orders of magnitude.
- Equilibrium properties are insensitive to resolution, while transient phenomena can be sensitive.
- Sensitivity of results to resolution is not known a priori.
- Numerical viscosity stabilizes instabilities.
- For a repeatable scientific calculation of detonation, the finest physical scales must be resolved.

