Highly Accurate Numerical Simulations of Pulsating One-Dimensional Detonations Andrew K. Henrick University of Notre Dame; Notre Dame, IN Tariq D. Aslam Los Alamos National Laboratory; Los Alamos, NM Joseph M. Powers University of Notre Dame; Notre Dame, IN 43^{rd} AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada 10-13 January 2005 ### **Motivation** - Accurate and rapid solution of challenging physical problems is facilitated by both hardware and software. - Moore's Law hardware gains may be on the wane. - Improved algorithms can supersede hardware gains. - Here, we apply shock-fitting and high order discretization to dramatically increase the accuracy of classical pulsating detonation solutions and enable prediction of new physical phenomena. ## **General Review of Pulsating Detonations** - Erpenbeck, *Phys. Fluids*, 1962, - Fickett and Wood, Phys. Fluids, 1966, - Lee and Stewart, *JFM*, 1990, - Bourlioux, et al., SIAM J. Appl. Math., 1991, - He and Lee, Phys. Fluids, 1995, - Short, SIAM J. Appl. Math., 1997, - Sharpe, *Proc. R. Soc.*, 1997. ## Review of Recent Work of Special Relevance - Kasimov and Stewart, *Phys. Fluids*, 2004: published detailed discussion of limit cycle behavior with shock-fitting; error $\sim O(\Delta x)$. - Ng, Higgins, Kiyanda, Radulescu, Lee, Bates, and Nikiforakis, CTM, in press, 2005: in addition, considered transition to chaos; error $\sim O(\Delta x)$. - Present study similar to above, but error $\sim O(\Delta x^5)$. ## **Model: Reactive Euler Equations** - one-dimensional, - unsteady, - inviscid, - one step kinetics with finite activation energy, - calorically perfect ideal gases with identical molecular masses and specific heats. ## **Model: Reactive Euler Equations** $$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial \xi} (\rho u) = 0,$$ $$\frac{\partial}{\partial t} (\rho u) + \frac{\partial}{\partial \xi} (\rho u^2 + p) = 0,$$ $$\frac{\partial}{\partial t} \left(\rho \left(e + \frac{1}{2} u^2 \right) \right) + \frac{\partial}{\partial \xi} \left(\rho u \left(e + \frac{1}{2} u^2 + \frac{p}{\rho} \right) \right) = 0,$$ $$\frac{\partial}{\partial t} (\rho \lambda) + \frac{\partial}{\partial \xi} (\rho u \lambda) = \alpha \rho (1 - \lambda) \exp\left(-\frac{\rho E}{p} \right),$$ $$e = \frac{1}{\gamma - 1} \frac{p}{\rho} - \lambda q.$$ # **Unsteady Shock Jump Equations** $$\rho_s(D(t) - u_s) = \rho_o(D(t) - u_o),$$ $$p_s - p_o = (\rho_o(D(t) - u_o))^2 \left(\frac{1}{\rho_o} - \frac{1}{\rho_s}\right),$$ $$e_s - e_o = \frac{1}{2}(p_s + p_o) \left(\frac{1}{\rho_o} - \frac{1}{\rho_s}\right),$$ $$\lambda_s = \lambda_o.$$ #### **Model Refinement** Transform to shock attached frame via $$x = \xi - \int_0^t D(\tau)d\tau,$$ Use jump conditions to develop shock-change equation for shock acceleration: $$\frac{dD}{dt} = -\left(\frac{d(\rho_s u_s)}{dD}\right)^{-1} \left(\frac{\partial}{\partial x} \left(\rho u(u-D) + p\right)\right).$$ #### **Numerical Method** - point-wise method of lines, - uniform spatial grid, - fifth order spatial discretization (WENO5M) takes PDEs into ODEs in time only, - fifth order explicit Runge-Kutta temporal discretization to solve ODEs. - details in Henrick, Aslam, Powers, JCP, in review. #### **Numerical Simulations** - \bullet $\rho_o=1$, $p_o=1$, $L_{1/2}=1$, q=50, $\gamma=1.2$, - Activation energy, E, a variable bifurcation parameter, 25 < E < 28.4, - CJ velocity: $D_{CJ} = \sqrt{11} + \sqrt{\frac{61}{5}} \approx 6.80947463,$ - ullet from 10 to 200 points in $L_{1/2}$, - ullet initial steady CJ state perturbed by truncation error, - integrated in time until limit cycle behavior realized. # Stable Case, E=25: Kasimov's Shock-Fitting - $N_{1/2} = 100, 200,$ - minimum error in D: $\sim 9.40 \times 10^{-3},$ - \bullet Error in D converges at $O(\Delta x^{1.01}).$ # Stable Case, E=25: Improved Shock-Fitting - \bullet $N_{1/2} = 20, 40,$ - ullet minimum error in D: $\sim 6.00 \times 10^{-8} \text{, for}$ $N_{1/2} = 40.$ - Error in D converges at $O(\Delta x^{5.01})$. # Linearly Unstable, Non-linearly Stable Case: $E=26\,$ - One linearly unstable mode, stabilized by non-linear effects, - Growth rate and frequency match linear theory to five decimal places. $$D, \, \frac{dD}{dt}$$ Phase Plane: $E=26$ - Unstable spiral at early time, stable period-1 limit cycle at late time, - Bifurcation point of $E=25.265\pm0.005$ agrees with linear stability theory. Period Doubling: E=27.35 - \bullet $N_{1/2} = 20$, - Bifurcation to period- 2 oscillation at $E=27.1875\pm0.0025$. $$D, \, \frac{dD}{dt}$$ Phase Plane: $E=27.35$ - Long time period-2 limit cycle, - Similar to independent results of Sharpe and Ng. # Transition to Chaos and Feigenbaum's Number $$\lim_{n \to \infty} \delta_n = \frac{E_n - E_{n-1}}{E_{n+1} - E_n} = 4.669201\dots$$ | n | E_n | $E_{n+1} - E_i$ | δ_n | |---------------|------------------------|-----------------------|-----------------| | 0 | 25.265 ± 0.005 | - | - | | $\parallel 1$ | 27.1875 ± 0.0025 | 1.9225 ± 0.0075 | 3.86 ± 0.05 | | $\parallel 2$ | 27.6850 ± 0.001 | 0.4975 ± 0.0325 | 4.26 ± 0.08 | | 3 | 27.8017 ± 0.0002 | 0.1167 ± 0.0012 | 4.66 ± 0.09 | | $\parallel 4$ | 27.82675 ± 0.00005 | 0.02505 ± 0.00025 | - | | : | : | :
: | : | | ∞ | | | 4.669201 | # $D \ {\bf versus} \ t \ {\bf for} \ {\bf Increasing} \ E$ #### **Discussion** - Models which include more physics have all challenges of present study as well as many more length scales; we are years away from accurate unsteady solutions with detailed kinetics, even for one dimension. - Algorithm craftsmanship can clearly trump hardware improvements on certain problems. - Reliance on hardware alone to achieve the gains described here would require many decades, even assuming the empirical Moore's Law continues to hold.