Highly Accurate Numerical Simulations of Pulsating One-Dimensional Detonations

Andrew K. Henrick University of Notre Dame; Notre Dame, IN

Tariq D. Aslam Los Alamos National Laboratory; Los Alamos, NM

Joseph M. Powers University of Notre Dame; Notre Dame, IN

 43^{rd} AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada

10-13 January 2005

Motivation

- Accurate and rapid solution of challenging physical problems is facilitated by both hardware and software.
- Moore's Law hardware gains may be on the wane.
- Improved algorithms can supersede hardware gains.
- Here, we apply shock-fitting and high order discretization to dramatically increase the accuracy of classical pulsating detonation solutions and enable prediction of new physical phenomena.

General Review of Pulsating Detonations

- Erpenbeck, *Phys. Fluids*, 1962,
- Fickett and Wood, Phys. Fluids, 1966,
- Lee and Stewart, *JFM*, 1990,
- Bourlioux, et al., SIAM J. Appl. Math., 1991,
- He and Lee, Phys. Fluids, 1995,
- Short, SIAM J. Appl. Math., 1997,
- Sharpe, *Proc. R. Soc.*, 1997.

Review of Recent Work of Special Relevance

- Kasimov and Stewart, *Phys. Fluids*, 2004: published detailed discussion of limit cycle behavior with shock-fitting; error $\sim O(\Delta x)$.
- Ng, Higgins, Kiyanda, Radulescu, Lee, Bates, and Nikiforakis, CTM, in press, 2005: in addition, considered transition to chaos; error $\sim O(\Delta x)$.
- Present study similar to above, but error $\sim O(\Delta x^5)$.

Model: Reactive Euler Equations

- one-dimensional,
- unsteady,
- inviscid,
- one step kinetics with finite activation energy,
- calorically perfect ideal gases with identical molecular masses and specific heats.

Model: Reactive Euler Equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial \xi} (\rho u) = 0,$$

$$\frac{\partial}{\partial t} (\rho u) + \frac{\partial}{\partial \xi} (\rho u^2 + p) = 0,$$

$$\frac{\partial}{\partial t} \left(\rho \left(e + \frac{1}{2} u^2 \right) \right) + \frac{\partial}{\partial \xi} \left(\rho u \left(e + \frac{1}{2} u^2 + \frac{p}{\rho} \right) \right) = 0,$$

$$\frac{\partial}{\partial t} (\rho \lambda) + \frac{\partial}{\partial \xi} (\rho u \lambda) = \alpha \rho (1 - \lambda) \exp\left(-\frac{\rho E}{p} \right),$$

$$e = \frac{1}{\gamma - 1} \frac{p}{\rho} - \lambda q.$$

Unsteady Shock Jump Equations

$$\rho_s(D(t) - u_s) = \rho_o(D(t) - u_o),$$

$$p_s - p_o = (\rho_o(D(t) - u_o))^2 \left(\frac{1}{\rho_o} - \frac{1}{\rho_s}\right),$$

$$e_s - e_o = \frac{1}{2}(p_s + p_o) \left(\frac{1}{\rho_o} - \frac{1}{\rho_s}\right),$$

$$\lambda_s = \lambda_o.$$

Model Refinement

Transform to shock attached frame via

$$x = \xi - \int_0^t D(\tau)d\tau,$$

 Use jump conditions to develop shock-change equation for shock acceleration:

$$\frac{dD}{dt} = -\left(\frac{d(\rho_s u_s)}{dD}\right)^{-1} \left(\frac{\partial}{\partial x} \left(\rho u(u-D) + p\right)\right).$$

Numerical Method

- point-wise method of lines,
- uniform spatial grid,
- fifth order spatial discretization (WENO5M) takes PDEs into ODEs in time only,
- fifth order explicit Runge-Kutta temporal discretization to solve ODEs.
- details in Henrick, Aslam, Powers, JCP, in review.

Numerical Simulations

- \bullet $\rho_o=1$, $p_o=1$, $L_{1/2}=1$, q=50, $\gamma=1.2$,
- Activation energy, E, a variable bifurcation parameter, 25 < E < 28.4,
- CJ velocity: $D_{CJ} = \sqrt{11} + \sqrt{\frac{61}{5}} \approx 6.80947463,$
- ullet from 10 to 200 points in $L_{1/2}$,
- ullet initial steady CJ state perturbed by truncation error,
- integrated in time until limit cycle behavior realized.

Stable Case, E=25: Kasimov's Shock-Fitting

- $N_{1/2} = 100, 200,$
- minimum error in D: $\sim 9.40 \times 10^{-3},$
- \bullet Error in D converges at $O(\Delta x^{1.01}).$

Stable Case, E=25: Improved Shock-Fitting

- \bullet $N_{1/2} = 20, 40,$
- ullet minimum error in D: $\sim 6.00 \times 10^{-8} \text{, for}$ $N_{1/2} = 40.$
- Error in D converges at $O(\Delta x^{5.01})$.

Linearly Unstable, Non-linearly Stable Case: $E=26\,$

- One linearly unstable mode, stabilized by non-linear effects,
- Growth rate and frequency match linear theory to five decimal places.

$$D, \, \frac{dD}{dt}$$
 Phase Plane: $E=26$

- Unstable spiral at early time, stable period-1 limit cycle at late time,
- Bifurcation point of $E=25.265\pm0.005$ agrees with linear stability theory.

Period Doubling: E=27.35

- \bullet $N_{1/2} = 20$,
- Bifurcation to period- 2 oscillation at $E=27.1875\pm0.0025$.

$$D, \, \frac{dD}{dt}$$
 Phase Plane: $E=27.35$

- Long time period-2
 limit cycle,
- Similar to independent results of Sharpe and Ng.

Transition to Chaos and Feigenbaum's Number

$$\lim_{n \to \infty} \delta_n = \frac{E_n - E_{n-1}}{E_{n+1} - E_n} = 4.669201\dots$$

n	E_n	$E_{n+1} - E_i$	δ_n
0	25.265 ± 0.005	-	-
$\parallel 1$	27.1875 ± 0.0025	1.9225 ± 0.0075	3.86 ± 0.05
$\parallel 2$	27.6850 ± 0.001	0.4975 ± 0.0325	4.26 ± 0.08
3	27.8017 ± 0.0002	0.1167 ± 0.0012	4.66 ± 0.09
$\parallel 4$	27.82675 ± 0.00005	0.02505 ± 0.00025	-
:	:	: :	:
∞			4.669201

$D \ {\bf versus} \ t \ {\bf for} \ {\bf Increasing} \ E$

Discussion

- Models which include more physics have all challenges of present study as well as many more length scales; we are years away from accurate unsteady solutions with detailed kinetics, even for one dimension.
- Algorithm craftsmanship can clearly trump hardware improvements on certain problems.
- Reliance on hardware alone to achieve the gains described here would require many decades, even assuming the empirical Moore's Law continues to hold.