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Motivation

e Accurate and rapid solution of challenging physical

problems is facilitated by both hardware and software.

e Moore’s Law hardware gains may be on the wane.

e Improved algorithms can supersede hardware gains.

e Here, we apply shock-fitting and high order discretiza-
tion to dramatically increase the accuracy of classical
pulsating detonation solutions and enable prediction of

new physical phenomena.




General Review of Pulsating Detonations

e Erpenbeck, Phys. Fluids, 1962,

e Fickett and Wood, Phys. Fluids, 1966,

® |ee and Stewart, JFM, 1990,

e Bourlioux, et al., SIAM J. Appl. Math., 1991,
e He and Lee, Phys. Fluids, 1995,

e Short, SIAM J. Appl. Math., 1997,

e Sharpe, Proc. R. Soc., 1997.




Review of Recent Work of Special Relevance

e Kasimov and Stewart, Phys. Fluids, 2004: published
detailed discussion of limit cycle behavior with shock-

fitting; error ~ O(Ax).

e Ng, Higgins, Kiyanda, Radulescu, Lee, Bates, and
Nikiforakis, CTM, in press, 2005: in addition, consid-

ered transition to chaos; error ~ O(Ax).

e Present study similar to above, but error ~ O(A:c5).




Model: Reactive Euler Equations

e one-dimensional,
e unsteady,

® |nviscid,

e one step kinetics with finite activation energy,

e calorically perfect ideal gases with identical molecular

masses and specific heats.




Model: Reactive Euler Equations




Unsteady Shock Jump Equations

IOO(D(t) o uO)?




Model Refinement

e Transform to shock attached frame via

r—¢— /OtD(T)dT,

e Use jump conditions to develop shock-change equa-

tion for shock acceleration:

D (M) (2 a2y 4.




Numerical Method

e point-wise method of lines,
e uniform spatial grid,

e fifth order spatial discretization (WENO5M) takes PDEs

iInto ODESs In time only,

e fifth order explicit Runge-Kutta temporal discretization

to solve ODEs.

e detalils in Henrick, Aslam, Powers, JCP, In review.




Numerical Simulations
® pO — 11p0 — 11[/1/2 — ]-,q: 50,"}/ — 12,

e Activation energy, £/, a variable bifurcation parameter,
20 < B < 284,

o (' J velocity: Doy = V11 4+ 4/ % ~ 6.80947463,

e from 10 to 200 points in L /s,
e initial steady C'.J state perturbed by truncation error,

e integrated in time until limit cycle behavior realized.




Stable Case, £/ = 25: Kasimov's Shock-Fitting
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® minimum error in D:

~ 940 x 1073,

e Error in D converges

at O(AxtO).




Stable Case, £ = 25: Improved Shock-Fitting
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e minimum error in D:
~ 6.00 x 1078, for
N1/2 — 40

e Error in D converges

at O(Ax>").




Linearly Unstable, Non-linearly Stable Case: E = 206

e One linearly unstable

mode, stabilized by

non-linear effects,

e Growth rate and fre-

guency match linear

theory to five decimal

places.




D, d—lt) Phase Plane: I = 26

e Unstable spiral

L cycle

| stationary

limit
'S

at early

time, stable period-1

limit cycle at late time,

e Bifurcation point of

E = 25.265 4

agrees  with

stability theory.

- 0.005

linear




Period Doubling: £ = 27.35

® N1/2 — 20,

e Bifurcation to period-

2 oscillation at £ =

27.1875 = 0.0025.




D, % Phase Plane: £/ = 27.35

stationary
limit cycle

e Long time period-2
limit cycle,
e Similar to independent

results of Sharpe and

Ng.




Transition to Chaos and Feigenbaum’s Number
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Bifurcation Diagram
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D versus t for Increasing £
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Discussion

e Models which include more physics have all chal-
lenges of present study as well as many more length
scales; we are years away from accurate unsteady so-

lutions with detailed kinetics, even for one dimension.

e Algorithm craftsmanship can clearly trump hardware

Improvements on certain problems.

e Reliance on hardware alone to achieve the gains
described here would require many decades, even

assuming the empirical Moore’s Law continues to hold.




