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Introduction

Motivation and background

• Reactive flow systems are multi-scale problems,

• severe stiffness arises in detailed gas-phase chemical kinetics

modeling,

• detailed kinetics are essential for accurate modeling,

• computational cost for reactive flow simulations increases with the

spatio-temporal scales’ range, the number of species, and the

number of reactions,

• manifold methods provide a potential for computational saving.



Partial Review of Manifold Methods in Reactive Systems

• The ILDM, CSP, and ICE-PIC are approximations of the reaction

slow invariant manifold.

• MEPT and similar methods: based on the minimum thermody-

namics potential function.

• IE method: requires reasonable initial conditions.

• Davis and Skodje, 1999: present a technique to construct the SIM

based on global phase analysis.

• Creta et al. and Giona et al., 2006: show the existence and

uniqueness of the global SIM.



Objective

Create an efficient algorithm that reduces the computational cost

for simulating a reactive flow system based on a reduction in the

stiffness and dimension of the phase space R
N .



Slow Invariant Manifold (SIM)

• The composition phase space for spatially homogeneous reactive

system:
dx

dt
= f (x) , x ∈ R

N .
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• An invariant manifold is defined as a subset S ⊂ R
N if for any

solution x(t), x(to) ∈ S , implies that for some tf > to, x(t) ∈

S for all t ∈ [to, tf ],

• not all invariant manifolds are attracting,

• attractiveness of SIMs increases as the stiffness increases,

• on the SIM, only slow modes contribute,

• the SIMs can be constructed by identifying all critical points, finite

and infinite, and connecting them via trajectories.
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• Poincaré phase space mapping, R
N → R

N+1:

Xi =
xi

p

1 +
P

i
x2

i

, i = 1, . . . , N,

XN+1 =
1

p

1 +
P

i
x2

i

,

• the infinite equilibria are the roots of the G−equations on the
equator of Poincaré sphere:

Gk ≡ Xi Ẋj(X)−Xj Ẋi(X) = 0, i, j = 1, . . . , N, i 6= j, k = 1, . . . , N−1

• to analyze the dynamical behavior, the flow has to be projected

onto a plane tangent to the Poincaré sphere,

• for N > 3 it is computationally inefficient and algorithmically

complex.



Alternative: Using Projective Space

• One-to-one mapping of the phase space, R
N → R

N ,

XN =
1

x1

,

Xi =
xk

x1

, i = 1, . . . , N − 1, k = 2, . . . , N,

• the equilibria are found in terms of ratios between the dependent

variables,

• the critical points of the resulting vector field represents the finite

and the infinite equilibria of the original vector field,

• XN = 0 represents the infinite equilibria.



Computational methodology

• Species evolution equations are polynomials,

• the dynamical behaviour of such polynomials are of algebraic-

geometric nature,

• numerical algebraic geometry lies at the intersection of algebraic

geometry and numerical analysisa,

• Bertini, a free software for computation in numerical alge-

braic geometry, will be used for computing the critical points.

aA. Sommese and C. Wampler, The Numerical Solution of Systems of Polynomials, World Science,

2005.



Simple Hydrogen System

• A kinetic model adopted from Michael J. V., 1992, Prog. Energy

Combust. Sci., 18 (4), pp. 327-345,

• the mechanism consist of J = 8 elementary bimolecular re-

actions involving L = 2 elements, and N = 6 species,

H2, O2, H,O,OH, and H2O,

• spatially homogenous with isothermal and isochoric conditions,

T = 1000 K, po = 0.5 atm,

• the system evolution ODEs are recast as DAEs.



DAEs formulation

d

dt









ρ̄H2

ρ̄O

ρ̄O2









=









ω̇H2

ω̇O

ω̇O2









≡ h,

ρ̄O + ρ̄OH + ρ̄H2O + 2ρ̄O2
= [ρ̄O + ρ̄OH

+ρ̄H2O + 2ρ̄O2
]o ,

ρ̄H + ρ̄OH + 2ρ̄H2O + 2ρ̄H2
= [ρ̄H + ρ̄OH

+2ρ̄H2O + 2ρ̄H2
]o ,

ρ̄H + ρ̄H2
+ ρ̄O2

+ ρ̄O + ρ̄OH + ρ̄H2O = [ρ̄H + ρ̄H2
+ ρ̄O2

+ρ̄O + ρ̄OH + ρ̄H2O]o ,

the ρ̄ are given in units of mol/cm3 and the ω̇ in units of mol/cm3/s.



Dynamical system analysis

R1 ≡ (ρ̄e
H2

, ρ̄e
O, ρ̄e

O2
) =

`

−5.101 × 10−6, 2.021 × 10−8,−1.136 × 10−8
´

,

(λ1, λ2, λ3) = (4.97996 × 106, 1.57592 × 106,−3.37824 × 105),

R2 ≡ (ρ̄e
H2

, ρ̄e
O, ρ̄e

O2
) =

`

4.186 × 10−6, 0.0, 3.093 × 10−6
´

,

(λ1, λ2, λ3) = (−5.88016 × 106,−1.19776 × 106, 2.55011 × 105),

R3 ≡ (ρ̄e
H2

, ρ̄e
O, ρ̄e

O2
) =

`

2.411 × 10−7, 4.061 × 10−7, 1.495 × 10−6
´

,

(λ1, λ2, λ3) = (−7.05241 × 106,−3.31066 × 105,−9.99734 × 104),

R4 ≡ (ρ̄e
H2

, ρ̄e
O, ρ̄e

O2
) =

`

4.460 × 10−7,−6.543 × 10−8, 2.003 × 10−6
´

,

(λ1, λ2, λ3) = (4.59069 × 106, 1.75881 × 106, 5.10102 × 105),

R5 ≡ (ρ̄e
H2

, ρ̄e
O, ρ̄e

O2
) =

`

3.547 × 10−8,−4.764 × 10−6, 4.894 × 10−6
´

,

(λ1, λ2, λ3) = (6.14154 × 107, 1.10481 × 106,−1.40938 × 105),

R6 ≡ (ρ̄e
H2

, ρ̄e
O, ρ̄e

O2
) =

`

3.933 × 10−8,−5.660 × 10−6, 5.493 × 10−6
´

,

(λ1, λ2, λ3) = (7.30643 × 107, 1.30698 × 106, 3.40968 × 105),

the ρ̄ e are given in units of mol/cm3 and the λ in units of 1/s.



Finite phase space
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Results

• By employing the projective space mapping,

d

dτ
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≡ H,

• the critical points of the vector space H, which has X3 = 0,

represent the infinite equilibria of the vector space h,

• the critical points of the vector space H, which has X3 6= 0,

represent the finite equilibria of the vector space h.



Dynamical system analysis

I1(X1, X2, X3) = (−21.1206,−9.28413, 0.0),

(λ1, λ2, λ3) = (−2.99236 × 1013
± 1.093 × 1013i, 7.40007 × 1012),

I2(X1, X2, X3) = (0.547525,−0.487801,0.0),

(λ1, λ2, λ3) = (−1.34892 × 1013, 2.39079 × 1011, 2.20957 × 1011),

I3(X1, X2, X3) = (−0.00479484,−0.668911,0.0),

(λ1, λ2, λ3) = (−1.30206 × 1013,−2.24731 × 1011, 1.581 × 109),

• the critical point I3 in the unstable direction is 2 orders of

magnitude smaller than the rest of the eigenvalues,

• small eigenvalue ≡ slow mode, τ = 1/ |Re[λ]|.



• By integrating from I3,
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• Mapping the SIM into the original R3,
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• The second branch of the SIM in the projective space,
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• The second branch mapped into the original R3,
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Detailed finite phase space

• Stiffness near equilibrium is O(102).
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Relation with thermodynamics

• The local minimum of |∇G| does not coincide with the SIM,

0 0.5 1 1.5 2 2.5 3

x 10
−6

0

0.5

1

1.5

2

2.5

x 10
−6

chemical equilibrium
point

SIM

ρ̄
O

2
[m

o
l/

cm
3
]

ρ̄H2
[mol/cm3]

locus of minimum of |∇G|



Summary

• Constructing the SIM is computationally efficient.

• Identifying all critical points, finite and infinite, play a major role in

constructing the SIM.

• In constrast to the Poincaré sphere, it is easy to extend the

projective geometry technique to higher dimensional systems,

(i.e. N = 9).

• Away from chemical equilibrium, thermodynamic potentials do not

correlate with the dynamics.



Acknowledgment

• For assistance:

– Dr. Jeffrey Diller, Department of Mathematics, University of Notre Dame.

– Mr. Joshua Mengers, Department of Aerospace & Mechanical Engineering,

University of Notre Dame.

• For funding

– National Science Foundation, Grant CBET-0650843.

– Center of Applied Mathematics, University of Notre Dame.



• The SIM for the system described in Ren et al.a
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aZ. Ren, S. Pope, A. Vladimirsky, J. Guckenheimer, 2006, J. Chem. Phys., 124 114111.
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