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Major Issues in Reduced Modeling of Reactive Flows

e How to construct a Slow Invariant Manifold (SIM)?

e SIM for ODEs is different than SIM for PDESs.

e How to construct a SIM for PDEs?




Partial Review of Manifold Methods in Reactive Systems

e Davis and Skodje, JCP, 1999: demonstration that (Intrinsic Low
Dimensional Manifold) ILDM is not SIM in simple non-linear
ODEs, finds SIM in simple ODEs,

e Singh, Powers, and Paolucci, JCP, 2002: use ILDM to construct
Approximate SIM (ASIM) in simple and detailed PDEs,

e Ren and Pope, C&F, 2006: show conditions for chemical manifold

to approximate reaction-diffusion system,

e Davis, JPC, 2006: systematic development of manifolds for
reaction-diffusion,

e Lam, CST, to appear, considers CSP for reaction-diffusion cou-
pling.




Motivation

e Severe stiffness in reactive flow systems with detailed gas phase
chemical kinetics renders fully resolved simulations of many

systems to be impractical.

ILDM method can reduce computational time while retaining

essential fidelity of full detailed kinetics.

e The ILDM is only an approximation of the SIM.

e Using ILDM in systems with diffusion can lead to large errors
at boundaries and when diffusion time scales are comparable to

those of reactions.

e An Approximate Slow Invariant Manifold (ASIM) is developed for

systems where reactions couple with diffusion.




Chemical Kinetics Modeled as a Dynamical System

e |[LDM developed for spatially homogeneous premixed reactor:
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Eigenvalues and Eigenvectors from Decomposition of Jacobian

e The time scales associated with the dynamical system are the

reciprocal of the eigenvalues:
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Mathematical Model for ILDM
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e By equilibrating the fast dynamics
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e Slow dynamics approximated from differential algebraic equa-
tions on the ILDM
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SIMvs. ILDM

e An invariant manifold is defined as a subspace S C R" if for any
solutiony(t), y(0) € S, implies that forsome T" > 0,y(t) € S
forall t € |0, 7.

e Slow Invariant Manifold (SIM) is a trajectory in phase space, and

the vector f must be tangent to it.

e |[LDM is an approximation of the SIM and is not a phase space

trajectory.

e |[LDM approximation gives rise to an intrinsic error which de-

creases as stiffness increases.




Comparison of the SIM with the ILDM

e Example from Davis and Skodje, J. Chem. Phys., 1999:
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e The ILDM for this system is given by

e while the SIM is given by
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Construction of the SIM via Trajectories

e An exact SIM can be found by identifying all critical points and
connecting them with trajectories (Davis, Skodie, 1999; Creta, et
al. 2006).

e Useful for ODEs.

e Equilibrium points at infinity must be considered.

e Not all invariant manifolds are attracting.




Zel’dovich Mechanism for N O Production

N+ NO=Ny+ 0
N——OgﬁNO 0,

e spatially homogeneous,

e isothermal and isobaric, 7' = 6000 K, P = 2.5 bar,
e |aw of mass action with reversible Arrhenius kinetics,
e kinetic data from Baulch, et al., 2005,

e thermodynamic data from Sonntag, et al., 2003.




Zel’dovich Mechanism: ODEs




Zel’dovich Mechanism: DAEsS

dINO
dt
d|N]
dt

[NO| + [O] +2|0;] NOJ, + [0, + 2[02], = C1,
[NO| + [N] +2[Ny (NOJ, + [N]o + 2[N2], = Cs,

[NO| + [N] + [N2] + [O2] + O] [NOJo + [N]o + [N,
+ (03], + [0O], = Cs.

Constraints for element and molecule conservation.




Classical Dynamic Systems Form

wino) = 0.72 — 9.4 x 10°[NO] + 2.2 x 107[N]
— 3.2 x 1013[N][NO] + 1.1 x 10"3[N]?,

Wiy = 0.72 + 5.8 x 10°[NO] — 2.3 x 107 [N]

— 1.0 x 10"[N][NO] — 1.1 x 10*3[N]?.

Constants evaluated for 7' = 6000 K, P = 2.5 bar, C; = (5 =
4 x 107% mole/cc, AGS = —2.3 x 10'% erg/mole, AGY =
—2.0x 10" erg/mole. Algebraic constraints absorbed into ODEs.




Species Evolution in Time

concentration (mole/cc)
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Dynamical Systems Approach to Construct SIM

Finite equilibria and linear stability:
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(A1, A2

(—1.6 x 107°%,—3.1 x 1079),

(5.4 x 105 —1.2 x 107) saddle (unstable)
(=5.2 x 1078, —2.0 x 1079),

(4.4 x 10" £ 8.0 x 10%) spiral source (unstable)
(7.3 x 1077,3.7 x 1079),

(—2.1 x 10%,—3.1 x 107) sink (stable, physical)
stiffness ratio = Ao /A = 14.7

Equilibria at infi nity and non-linear stability

(+00,0)  sink/saddle (unstable),

(—00,0)  source (unstable).




Detailed Phase Space Map with All Finite Equilibria
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Projected Phase Space from Poincaré’s Sphere
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ASIM for Reaction-Diffusion PDEs

e Slow dynamics can be approximated by the ASIM
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e Spatially discretize to form differential-algebraic equations (DAES):
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e Solve numerically with DASSL

£ computed in situ; easily fixed for a priori computation




Davis-Skodje Example Extended to Reaction-Diffusion
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e Boundary conditions are chosen on the ILDM

y(t,0) =0, Y(t»1)< 11 )

1
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e Initial conditions

y(0,2) = (1 N




Davis-Skodje Reaction-Diffusion Results

Full PDE] | | Full PDE
* ASIM + ASIM

e Solution att = 5, for v = 10 with varying D.

e PDE solutions are fully resolved.




Reaction Diffusion Example Results

e The global error when using ASIM is small in general, and is
similar to that incurred by the full PDE near steady state.
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N O Production Reaction-Diffusion System

e Isothermal and isobaric, T' = 3500 K, P = 1.5 bar, with
Neumann boundary conditions,and initial distribution:
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N O Production Reaction Diffusion System

o Att = 1079 s.
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Conclusions

e No robust analysis currently exists to determine reaction and

diffusion time scales a priori.

e The ASIM couples reaction and diffusion while systematically

equilibrating fast time scales.

e Casting the ASIM method in terms of differential-algebraic equa-

tions is an effective way to robustly implement the method.

e At this point the fast and slow subspace decomposition is depen-

dent only on reaction and should itself be modified to include fast
and slow diffusion time scales.

e The error incurred in approximating the slow dynamics by the
ASIM is small in general.




