Approximate Slow Invariant Manifolds for Reaction-Diffusion Systems

Joseph M. Powers Samuel Paolucci Ashraf N. Al-Khateeb
Department of Aerospace and Mechanical Engineering
University of Notre Dame, Notre Dame, Indiana

SIAM Conference on Applications of Dynamical Systems
Snowbird, Utah
29 May 2007

support: NSF, ND Center for Applied Mathematics

Major Issues in Reduced Modeling of Reactive Flows

- How to construct a Slow Invariant Manifold (SIM)?
- SIM for ODEs is different than SIM for PDEs.
- How to construct a SIM for PDEs?

Partial Review of Manifold Methods in Reactive Systems

- Davis and Skodje, JCP, 1999: demonstration that (Intrinsic Low Dimensional Manifold) ILDM is not SIM in simple non-linear ODEs, finds SIM in simple ODEs,
- Singh, Powers, and Paolucci, JCP, 2002: use ILDM to construct Approximate SIM (ASIM) in simple and detailed PDEs,
- Ren and Pope, C&F, 2006: show conditions for chemical manifold to approximate reaction-diffusion system,
- Davis, JPC, 2006: systematic development of manifolds for reaction-diffusion,
- Lam, *CST*, to appear, considers CSP for reaction-diffusion coupling.

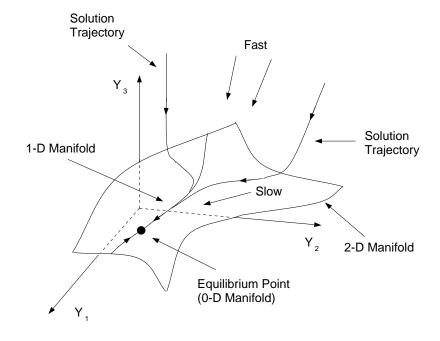
Motivation

- Severe stiffness in reactive flow systems with detailed gas phase chemical kinetics renders fully resolved simulations of many systems to be impractical.
- ILDM method can reduce computational time while retaining essential fidelity of full detailed kinetics.
- The ILDM is only an approximation of the SIM.
- Using ILDM in systems with diffusion can lead to large errors at boundaries and when diffusion time scales are comparable to those of reactions.
- An Approximate Slow Invariant Manifold (ASIM) is developed for systems where reactions couple with diffusion.

Chemical Kinetics Modeled as a Dynamical System

ILDM developed for spatially homogeneous premixed reactor:

$$\frac{d\mathbf{y}}{dt} = \mathbf{f}(\mathbf{y}), \quad \mathbf{y}(0) = \mathbf{y}_0, \quad \mathbf{y} \in \mathbb{R}^n,$$
$$\mathbf{y} = (h, p, Y_1, Y_2, ..., Y_{n-2})^T.$$



Eigenvalues and Eigenvectors from Decomposition of Jacobian

$$\mathbf{f_y} = \mathbf{J} = \mathbf{V} \boldsymbol{\Lambda} \tilde{\mathbf{V}}, \quad \tilde{\mathbf{V}} = \mathbf{V}^{-1},$$

$$\mathbf{V} = \begin{pmatrix} \mathbf{V}_s & \mathbf{V}_f \end{pmatrix},$$

$$\boldsymbol{\Lambda} = \begin{pmatrix} \boldsymbol{\Lambda}_{(s)} & 0 \\ -\boldsymbol{\Lambda}_{(f)} & \boldsymbol{\Lambda}_{(f)} \end{pmatrix}.$$

 The time scales associated with the dynamical system are the reciprocal of the eigenvalues:

$$\tau_i = \frac{1}{|\lambda_{(i)}|}.$$

Mathematical Model for ILDM

ullet With $\mathbf{z} = ilde{\mathbf{V}}\mathbf{y}$ and $\mathbf{g} = \mathbf{f} - \mathbf{f}_{\mathbf{y}}\mathbf{y}$

$$\frac{1}{\lambda_{(i)}} \left(\frac{dz_i}{dt} + \tilde{\mathbf{v}}_i \sum_{j=1}^n \frac{d\mathbf{v}_j}{dt} z_j \right) = z_i + \frac{\tilde{\mathbf{v}}_i \mathbf{g}}{\lambda_{(i)}}, \quad i = 1, \dots, n,$$

By equilibrating the fast dynamics

$$\underbrace{z_i + \frac{\tilde{\mathbf{v}}_i \mathbf{g}}{\lambda_{(i)}}}_{\text{ILDM}} = 0, \quad i = m + 1, \dots, n. \quad \Rightarrow \underbrace{\tilde{\mathbf{V}}_f \mathbf{f} = \mathbf{0}}_{\text{ILDM}}.$$

 Slow dynamics approximated from differential algebraic equations on the ILDM

$$\tilde{\mathbf{V}}_s \frac{d\mathbf{y}}{dt} = \tilde{\mathbf{V}}_s \mathbf{f}, \qquad \mathbf{0} = \tilde{\mathbf{V}}_f \mathbf{f}.$$

SIM vs. ILDM

- An invariant manifold is defined as a subspace $S \subset \mathbb{R}^n$ if for any solution $\mathbf{y}(t)$, $\mathbf{y}(0) \in S$, implies that for some T > 0, $\mathbf{y}(t) \in S$ for all $t \in [0,T]$.
- Slow Invariant Manifold (SIM) is a trajectory in phase space, and the vector f must be tangent to it.
- ILDM is an approximation of the SIM and is not a phase space trajectory.
- ILDM approximation gives rise to an intrinsic error which decreases as stiffness increases.

Comparison of the SIM with the ILDM

• Example from Davis and Skodje, *J. Chem. Phys.*, 1999:

$$\frac{d\mathbf{y}}{dt} = \frac{d}{dt} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} -y_1 \\ -\gamma y_2 + \frac{(\gamma - 1)y_1 + \gamma y_1^2}{(1 + y_1)^2} \end{pmatrix} = \mathbf{f}(\mathbf{y}),$$

The ILDM for this system is given by

$$\tilde{\mathbf{V}}_f \mathbf{f} = 0, \quad \Rightarrow \quad y_2 = \frac{y_1}{1 + y_1} + \frac{2y_1^2}{\gamma(\gamma - 1)(1 + y_1)^3},$$

while the SIM is given by

$$y_2 = y_1(1 - y_1 + y_1^2 - y_1^3 + y_1^4 + \dots) = \frac{y_1}{1 + y_1}.$$

Construction of the SIM via Trajectories

- An exact SIM can be found by identifying all critical points and connecting them with trajectories (Davis, Skodie, 1999; Creta, et al. 2006).
- Useful for ODEs.
- Equilibrium points at infinity must be considered.
- Not all invariant manifolds are attracting.

Zel'dovich Mechanism for NO Production

$$N + NO \rightleftharpoons N_2 + O$$

 $N + O_2 \rightleftharpoons NO + O$

- spatially homogeneous,
- \bullet isothermal and isobaric, T=6000~K, P=2.5~bar,
- law of mass action with reversible Arrhenius kinetics,
- kinetic data from Baulch, et al., 2005,
- thermodynamic data from Sonntag, et al., 2003.

Zel'dovich Mechanism: ODEs

$$\frac{d[NO]}{dt} = r_2 - r_1 = \dot{\omega}_{[NO]}, \quad [NO](t=0) = [NO]_o,
\frac{d[N]}{dt} = -r_1 - r_2 = \dot{\omega}_{[N]}, \quad [N](t=0) = [N]_o,
\frac{d[N_2]}{dt} = r_1 = \dot{\omega}_{[N_2]}, \quad [N_2](t=0) = [N_2]_o,
\frac{d[O]}{dt} = r_1 + r_2 = \dot{\omega}_{[O]}, \quad [O](t=0) = [O]_o,
\frac{d[O_2]}{dt} = -r_2 = \dot{\omega}_{[O_2]}, \quad [O_2](t=0) = [O_2]_o,
r_1 = k_1[N][NO] \left(1 - \frac{1}{K_{eq1}} \frac{[N_2][O]}{[N][NO]}\right), K_{eq1} = \exp\left(\frac{-\Delta G_2^o}{\Re T}\right),
r_2 = k_2[N][O_2] \left(1 - \frac{1}{K_{eq2}} \frac{[NO][O]}{[N][O_2]}\right), K_{eq2} = \exp\left(\frac{-\Delta G_2^o}{\Re T}\right).$$

Zel'dovich Mechanism: DAEs

$$\frac{d[NO]}{dt} = \dot{\omega}_{[NO]},$$

$$\frac{d[N]}{dt} = \dot{\omega}_{[N]},$$

$$[NO] + [O] + 2[O_2] = [NO]_o + [O]_o + 2[O_2]_o \equiv C_1,$$

$$[NO] + [N] + 2[N_2] = [NO]_o + [N]_o + 2[N_2]_o \equiv C_2,$$

$$[NO] + [N] + [N_2] + [O_2] + [O] = [NO]_o + [N]_o + [N_2]_o$$

$$+ [O_2]_o + [O]_o \equiv C_3.$$

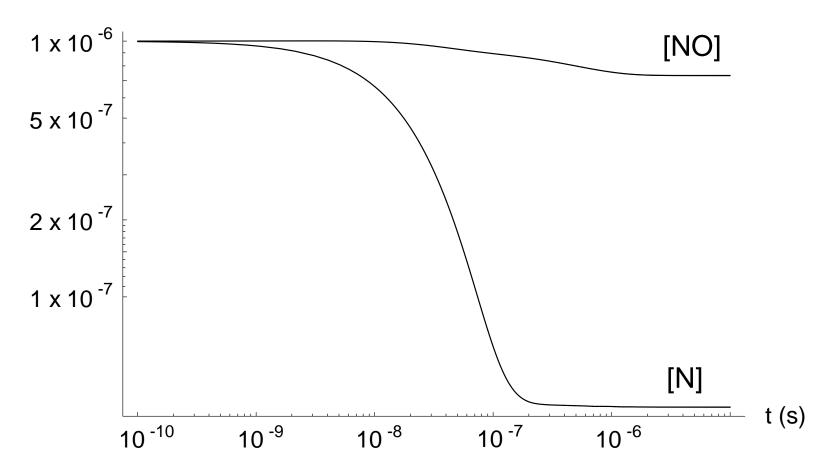
Constraints for element and molecule conservation.

Classical Dynamic Systems Form

$$\frac{d[NO]}{dt} = \hat{\omega}_{[NO]} = 0.72 - 9.4 \times 10^{5} [NO] + 2.2 \times 10^{7} [N]$$
$$-3.2 \times 10^{13} [N] [NO] + 1.1 \times 10^{13} [N]^{2},$$
$$\frac{d[N]}{dt} = \hat{\omega}_{[N]} = 0.72 + 5.8 \times 10^{5} [NO] - 2.3 \times 10^{7} [N]$$
$$-1.0 \times 10^{13} [N] [NO] - 1.1 \times 10^{13} [N]^{2}.$$

Constants evaluated for T=6000~K, P=2.5~bar, $C_1=C_2=4\times10^{-6}~mole/cc$, $\Delta G_1^o=-2.3\times10^{12}~erg/mole$, $\Delta G_2^o=-2.0\times10^{12}~erg/mole$. Algebraic constraints absorbed into ODEs.

concentration (mole/cc)



Dynamical Systems Approach to Construct SIM

Finite equilibria and linear stability:

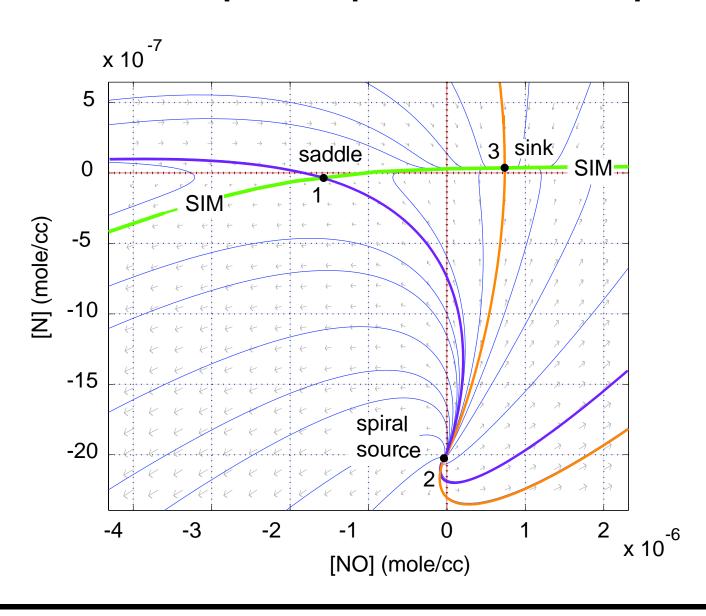
$$\begin{array}{lll} 1. \ ([NO],[N]) & = & (-1.6\times 10^{-6}, -3.1\times 10^{-8}), \\ & (\lambda_1,\lambda_2) & = & (5.4\times 10^6, -1.2\times 10^7) \quad \text{saddle (unstable)} \\ 2. \ ([NO],[N]) & = & (-5.2\times 10^{-8}, -2.0\times 10^{-6}), \\ & (\lambda_1,\lambda_2) & = & (4.4\times 10^7\pm 8.0\times 10^6 i) \quad \text{spiral source (unstable)} \\ 3. \ ([NO],[N]) & = & (7.3\times 10^{-7}, 3.7\times 10^{-8}), \\ & (\lambda_1,\lambda_2) & = & (-2.1\times 10^6, -3.1\times 10^7) \quad \text{sink (stable, physical)} \\ & \quad \quad \text{stiffness ratio} = \lambda_2/\lambda_1 = 14.7 \end{array}$$

Equilibria at infi nity and non-linear stability

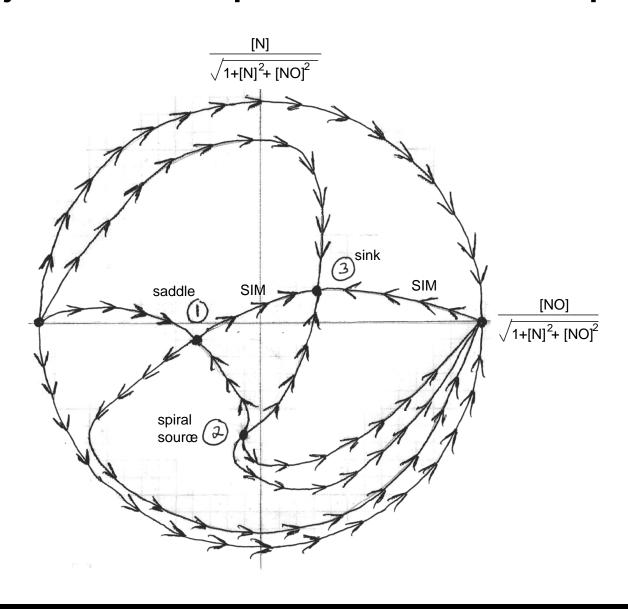
$$1. ([NO], [N]) \rightarrow (+\infty, 0)$$
 sink/saddle (unstable),

$$2.([NO],[N]) \rightarrow (-\infty,0)$$
 source (unstable).

Detailed Phase Space Map with All Finite Equilibria



Projected Phase Space from Poincaré's Sphere



ASIM for Reaction-Diffusion PDEs

Slow dynamics can be approximated by the ASIM

$$\tilde{\mathbf{V}}_s \frac{\partial \mathbf{y}}{\partial t} = \tilde{\mathbf{V}}_s \mathbf{f} - \tilde{\mathbf{V}}_s \frac{\partial \mathbf{h}}{\partial x},$$

$$\mathbf{0} = \tilde{\mathbf{V}}_f \mathbf{f} - \tilde{\mathbf{V}}_f \frac{\partial \mathbf{h}}{\partial x}.$$

• Spatially discretize to form differential-algebraic equations (DAEs):

$$\tilde{\mathbf{V}}_{si} \frac{d\mathbf{y}_i}{dt} = \tilde{\mathbf{V}}_{si} \mathbf{f}_i - \tilde{\mathbf{V}}_{si} \frac{\mathbf{h}_{i+1} - \mathbf{h}_{i-1}}{2\Delta x},$$

$$\mathbf{0} = \tilde{\mathbf{V}}_{fi} \mathbf{f}_i - \tilde{\mathbf{V}}_{fi} \frac{\mathbf{h}_{i+1} - \mathbf{h}_{i-1}}{2\Delta x}.$$

- Solve numerically with DASSL
- ullet $ilde{V}_s$, $ilde{V}_f$ computed *in situ*; easily fixed for *a priori* computation

Davis-Skodje Example Extended to Reaction-Diffusion

$$\frac{\partial \mathbf{y}}{\partial t} = \mathbf{f}(\mathbf{y}) - \mathcal{D}\frac{\partial \mathbf{h}}{\partial x}$$

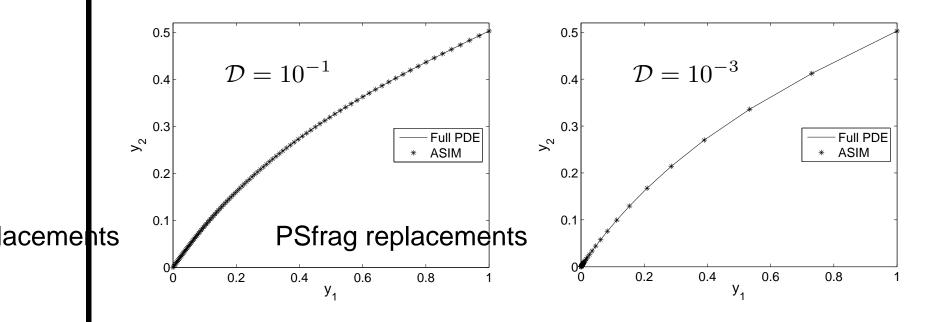
Boundary conditions are chosen on the ILDM

$$\mathbf{y}(t,0) = \mathbf{0}, \quad \mathbf{y}(t,1) = \begin{pmatrix} 1 \\ \frac{1}{2} + \frac{1}{4\gamma(\gamma-1)} \end{pmatrix}.$$

Initial conditions

$$\mathbf{y}(0,x) = \begin{pmatrix} x \\ \left(\frac{1}{2} + \frac{1}{4\gamma(\gamma - 1)}\right)x \end{pmatrix}.$$

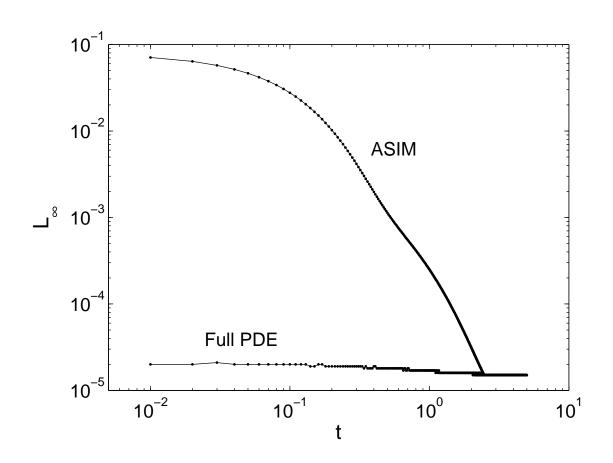
Davis-Skodje Reaction-Diffusion Results



- \bullet Solution at t=5 , for $\gamma=10$ with varying $\mathcal{D}.$
- PDE solutions are fully resolved.

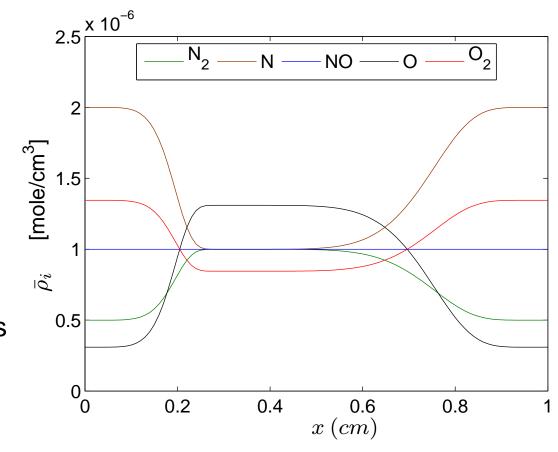
Reaction Diffusion Example Results

 The global error when using ASIM is small in general, and is similar to that incurred by the full PDE near steady state.



NO Production Reaction-Diffusion System

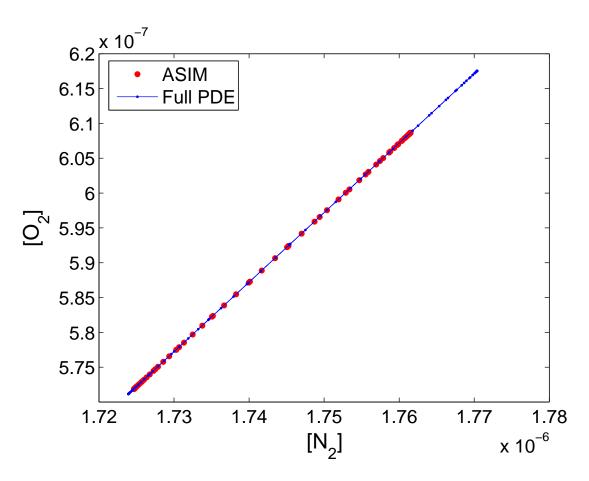
ullet Isothermal and isobaric, $T=3500\ K, P=1.5\ bar$, with Neumann boundary conditions,and initial distribution:



Sfrag replacements

${\cal NO}$ Production Reaction Diffusion System

• At $t = 10^{-6} s$.



Conclusions

- No robust analysis currently exists to determine reaction and diffusion time scales a priori.
- The ASIM couples reaction and diffusion while systematically equilibrating fast time scales.
- Casting the ASIM method in terms of differential-algebraic equations is an effective way to robustly implement the method.
- At this point the fast and slow subspace decomposition is dependent only on reaction and should itself be modified to include fast and slow diffusion time scales.
- The error incurred in approximating the slow dynamics by the ASIM is small in general.