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One-Dimensional Slow Invariant Manifolds for Fully Coupled Reaction and
Micro-scale Diffusion∗
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Abstract. The method of slow invariant manifolds (SIMs), applied previously to model the reduced kinetics
of spatially homogeneous reactive systems, is extended to systems with diffusion. Through the use
of a Galerkin projection, the governing partial differential equations are cast into a finite system of
ordinary differential equations to be solved on an approximate inertial manifold. The SIM construc-
tion technique of identifying equilibria and connecting heteroclinic orbits is extended by identifying
steady state solutions to the governing partial differential equations and connecting analogous or-
bits in the Galerkin-projected space. In parametric studies varying the domain length, the time
scale spectrum is shifted, and various classes of nonlinear dynamics are identified. A critical length
scale is identified below which the spatially homogeneous one-dimensional SIM models the long
time dynamics of the system. At this critical length scale, a bifurcation in the slow dynamics of
the system is identified; additional real nonsingular steady state solutions are found which lead to a
diffusion-modified one-dimensional SIM. At these longer lengths, the spectral gap in the time scales
indicates that an appropriate manifold for a reduction technique is higher than one-dimensional.
This is shown for two examples: a simple chemical reaction mechanism, and the Zel’dovich reaction
mechanism of NO production. These examples are evaluated in the spatially homogeneous case
(a one-term projection), a two-term projection capturing the coarsest effects of diffusion, and a
high-order projection that is fully resolved.

Key words. slow invariant manifold, approximate inertial manifold, reaction-diffusion, chemical kinetics, model
reduction, bifurcation
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1. Introduction. Numerical simulations of the partial differential equations (PDEs) that
model multiscale continuum physics are prevalent across many fields of engineering. To obtain
results with fidelity to the underlying continuum model, discrete simulations must generally
resolve the entire range of scales present, both spatial and temporal; a large disparity in these
scales is typically referred to as stiffness. The computational costs associated with these stiff
simulations grow with the disparity of scales [1].

In recent decades, there have been efforts in model reduction techniques to decrease the
computational costs of simulating reactive flows while maintaining as much consistency with
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the underlying physics as possible. The reviews of Griffiths [2] and Lu and Law [3] provide
background information on many such methods which will not be considered here. Manifold
methods are a class of reduction technique that attempt to reduce the computational cost by
projecting dynamics onto lower-dimensional manifolds which are chosen to capture the long
time dynamics of the system. The justification for manifold methods as a reduction technique
is based on a phase space analysis in which families of nearby trajectories are predicted to
collapse onto low-dimensional manifolds. Methods such as intrinsic low-dimensional manifold
[4], computational singular perturbation (CSP) [5], and global quasi-linearization [6] identify a
dynamical system’s slow time scales to build a manifold; however, these methods do not create
invariant manifolds. For a manifold to be invariant, the trajectory of an initial condition on
the manifold must lie completely within the manifold for all later times. This is advantageous
for a reduction technique since after the projection onto an invariant manifold, additional
errors will not be incurred. The method of invariant manifolds [7] addresses this by using a
thermodynamic projector to construct an invariant manifold. Other similar techniques such
as minimal entropy production trajectory [8] and invariant constrained equilibrium edge [9]
also construct invariant manifolds using equilibrium thermodynamic potentials. The slow
invariant manifold (SIM) is another invariant manifold based on consideration of the local
times scales of the system, which can be constructed using various techniques [10, 11, 12,
13, 14, 15, 16, 17, 18, 19]. Al-Khateeb et al. [18] give a detailed discussion of these spatially
homogeneous invariant manifold methods, which are applied to ordinary differential equations
(ODEs).

For manifold methods to be incorporated into systems with transport, enhancements are
required. These can be categorized into two types: (i) methods which use spatially homoge-
neous manifolds and then account for reaction-transport coupling, and (ii) methods that build
manifolds based on the governing PDEs, which include transport. Methods of the first type
include the Maas–Pope projection (MPP) [20, 21], the close-parallel assumption [22, 23], and
a CSP extension to PDEs [24], which all use projector operators to account for diffusion while
implementing spatially homogeneous manifold methods. The second type includes another
CSP extension [25], approximate slow invariant manifold [26], and reaction-diffusion manifold
[27], which each evaluate time scales so as to segregate the associated bases into fast and slow
that are used to construct algebraic constraints defining slow manifolds for the governing PDE.
Additional methods of the second type are a SIM extension [28, 29], where low-dimensional
manifolds are built in the infinite-dimensional function space by using a predictor-corrector
method modified from the MPP, and stretching-based reduction [30], which uses a normal
stretching rate analysis of local linear dynamics to generate a local coordinate that segregates
the slow stretching directions from the others.

We construct a SIM that is based on the governing PDEs of a reaction-diffusion system.
We choose the SIM since it is a canonical manifold that isolates the slow dynamics. An
intuitive expectation which follows from Robinson’s squeezing property [31, Chap. 14] is that
for trajectories to rapidly collapse onto the SIM, there must be a sufficient spectral gap in
the time scales. This same separation of scales typically makes simulations costly. Using
the SIM, however, allows us to leverage the time scale disparity; by identifying the slowest
dynamics, the SIM accurately captures the long time behavior of the system. We will employ
the construction technique pioneered by Davis and Skodje [13] for spatially homogeneous
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562 J. D. MENGERS AND J. M. POWERS

SIM

Saddle

Sink

Figure 1. Sketch of one-dimensional SIM construction.

systems. In their method, branches of the one-dimensional SIM are identified as heteroclinic
orbits connecting equilibria. One must first identify all equilibria of the system. A branch of
the SIM is a heteroclinic orbit that connects a (nonphysical) saddle equilibrium that has one
positive eigenvalue to the (physical) sink equilibrium. Trajectories are integrated from initial
conditions that are perturbed from the nonphysical saddle along its only unstable eigenvector;
any such trajectory that osculates with the eigenvector of the physical equilibrium whose
eigenvalue corresponds to the slowest local time scale is a branch of the one-dimensional SIM.
As sketched in Figure 1, the SIM connects the saddle to the sink, and trajectories originating
away from the SIM are drawn toward it. We note that while this sketch often accurately
represents a system’s nonlinear dynamics, that there is no guarantee of global attraction of
trajectories to the SIM.

We extend this SIM construction technique to reaction-diffusion systems by using the
method of weighted residuals to reduce the governing PDEs into a system of ODEs; specifically,
we employ the Galerkin method. We thus project solutions to the governing reaction-diffusion
PDEs onto an approximate inertial manifold (AIM) [31, Chap. 14] and [32]. This is the same
technique that Lorenz [33] used to simplify the Navier–Stokes equations. The resulting low-
dimensional dynamical system has steady state solutions, or equilibria, that lend themselves
to the same SIM construction techniques as spatially homogeneous systems. These equilibria
in the Galerkin projection correspond to steady state solutions to the governing PDE. We
then construct a one-dimensional SIM using heteroclinic orbits which approximates the time
evolution of a function of the spatial variable from a nonphysical steady state to the phys-
ical equilibrium. Thus, our work is distinguished from previous reaction-diffusion reduction
techniques, which were developed independent of inertial manifold theories [28, 30]. Finally,
we note that a general and pertinent mathematical discussion of the nonlinear dynamics, bi-
furcation, and invariant manifolds of reactive-diffusive systems is given by Henry [34] with
additional discussion given by Fusco and Hale [35].

In this method we construct a one-dimensional manifold to use in a reduction of the system.
We find some cases, such as when the slowest reaction and slowest diffusion have similar time
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scales, where this one-dimensional approach might not suffice. Others [36, 37, 38, 39, 40] have
also examined time scale relationships in reaction-diffusion systems in the context of reduction
techniques: Kalachev et al. [36] compared the extreme cases where reaction was much faster
than diffusion or vice versa for a simple reaction-diffusion system. Yannacopoulos et al. [37]
use inertial manifolds to develop lumping methods for reduction. The novelty of the present
work is in the examination of the SIM manifold method with diffusion across a range of length
scales where the reaction and diffusion act at the same time scales.

Our method results in a concise analytical coupling of reaction and diffusion time scales.
Other methods, such as operator splitting [41, 42, 43], consider reaction and diffusion inde-
pendently. To apply operator splitting, one integrates reaction terms implicitly and separately
integrates diffusion and advection terms explicitly. This contrasts with our approach, which
is built upon an underlying physical coupling of reaction and diffusion processes. Our results
will demonstrate a full coupling between reaction and diffusion length and time scales in a
fashion consistent with Al-Khateeb, Powers, and Paolucci [44], as well as classical diffusion
theory [45, p. 126]. This coupling of scales has implications on the necessary grid resolution
in discrete simulations which implement spatially homogeneous manifold methods. The lower
bound of wavelengths modeled is dependent on the spatial resolution; if a grid is too coarse, a
spatially homogeneous manifold will fail to resolve wavelengths whose corresponding diffusion
time scales are as slow as or slower than the slowest reaction time scales. Therefore, spatially
homogeneous SIMs, which are constructed to model the slowest time scales, are inadequate
for simulations with coarse grid resolution.

We model reaction-diffusion systems that exhibit an infinite spectrum of diffusion length
scales and a finite set of reaction time scales. By treating the domain length as a variable
parameter, we change the spectrum of length scales and, therefore, change the spectrum of
diffusion time scales. This allows us to study various classes of behavior of reaction-diffusion
systems. We will examine two cases: (i) a highly resolved 26-term truncation that takes into
account one spatially homogeneous mode and 25 modes with various spatial wavelengths (al-
lowing us to examine the accuracy of lower truncations and to identify underlying consistencies
between our method and the continuum model); and (ii) a two-term truncation that includes
only the spatially homogeneous mode and the fundamental spatial mode. The advantage of
this approach is that it is a low-dimensional, simple model that demonstrates the interesting
dynamics of the interaction between reaction and diffusion; however, for large domain lengths,
this truncation lacks spatial resolution. Despite the advantages of this method, it becomes
computationally prohibitive for large reaction-diffusion systems and/or systems in multiple
spatial dimensions.

This paper is structured into three sections. In section 2, mathematical background, we
examine in detail the governing reaction-diffusion equations and a series of reductions to them;
subsections 2.1 and 2.2 discuss the combustion modeling and assumptions, and subsection
2.3 discusses various reductions to our governing equations. In section 3, methodology, we
outline the extension of SIM to reaction-diffusion systems. In section 4, model problems,
results are shown for two different chemical kinetic mechanisms, each coupled with a simple
diffusion model. The first is a simple one-step kinetic mechanism, and the second is the
two-step Zel’dovich reaction mechanism of NO production. The second system’s spatially
homogeneous SIM was studied by Al-Khateeb et al. [18]. More generally stated, the present
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564 J. D. MENGERS AND J. M. POWERS

study is largely an extension of [18] to include effects of diffusion.

2. Mathematical background. We are interested in a rational reduction of systems of
PDEs of the form

(2.1)
∂z

∂t
= f(z) +

∂

∂x

(
D · ∂z

∂x

)
,

where z ∈ R
R are dependent variables, f are nonlinear functions that represent rates of change

due to reaction, D is an R×R matrix of mass diffusivities, the temporal domain is t ∈ [0,∞),
and there is only one spatial Cartesian dimension, x ∈ [0, �]. To enable a simpler analysis, we
assume D is of the form D = DI, where D is a scalar constant and I is the identity matrix.
Then (2.1) can be cast as

(2.2)
∂z

∂t
= f(z)− L (z),

where L = −D ∂2/∂x2 is a self-adjoint, positive semidefinite, linear spatial differential oper-
ator that models diffusion. We choose to study homogeneous Neumann boundary conditions

(2.3)
∂z

∂x

∣∣∣∣
x=0

=
∂z

∂x

∣∣∣∣
x=�

= 0.

This choice will enable a direct comparison of reduction methods developed for spatially
homogeneous systems to those that include diffusion. More general boundary conditions
could be studied at the expense of introducing additional thin layers into the solution.

Following Finlayson [46], we approximate a solution to (2.2)–(2.3) by using separation
of variables coupled with the method of weighted residuals. The dependent variables, z, are
approximated by a series of the product of time-dependent amplitudes, ζm(t), and a set of
spatial basis functions, φm(x):

(2.4) z(x, t) ≈ z̃M (x, t) =
M∑

m=0

ζm(t)φm(x),

where M is the number of terms in the approximation, and for each m = 0, . . . ,M , ζm ∈ R
R.

We can choose the basis functions to be the eigenfunctions of the diffusion operator,

(2.5) L (φm) = μmφm for m = 0, . . . ,M,

where the eigenvalues, μm, are guaranteed to be nonnegative and real, and the eigenfunctions
orthogonal,

(2.6) 〈φm(x), φn(x)〉
{

= 0 for m �= n,
�= 0 for m = n,

in a Lebesgue space where the inner product is defined as 〈φm(x), φn(x)〉 =
∫ �
0 φm(x)φn(x)dx.

Note that the eigenfunctions could be normalized without loss of generality; however, we omit
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this process to allow for a direct comparison between solutions from the weighted residual
approach and spatially homogeneous solutions to (2.1). The eigenfunctions are required to
match the boundary conditions of (2.3), yielding

(2.7)
dφm
dx

∣∣∣∣
x=0

=
dφm
dx

∣∣∣∣
x=�

= 0.

We also choose φ0 to be a spatially homogeneous function whose eigenvalue is zero, μ0 = 0.
We then order the subsequent eigenfunctions by increasing eigenvalues (i.e., μ0 ≤ μ1 ≤ μ2 . . .).

When the approximation from (2.4) is substituted into the form from (2.2), the result does
not satisfy the equation exactly, but it will have a nonzero residual,

(2.8) r(x, t) =
M∑

m=0

dζm
dt

φm(x)− f

(
M∑

m̂=0

ζm̂(t)φm̂(x)

)
+

M∑
m=0

μmζm(t)φm(x),

whenM is finite. This residual is not the error, e(x, t) = z(x, t)−∑M
m=0 ζm(t)φm(x); however,

if the residual is zero, the error will be zero as well. To formulate evolution equations for the
amplitudes, we take a series of M spatially weighted averages of the residual and require each
be zero,

(2.9) 〈r(x, t), ψm(x)〉 = 0 for all m = 0, . . . ,M and t ∈ [0,∞),

where ψm(x) is a set of M spatial weighting functions. There are many viable choices for
weighting functions. If we make the common choice of the basis functions [31, 32] as the
weighting functions, ψm(x) = φm(x), our method is a Galerkin method. Substituting (2.8)
(with dummy indices changed from m to n) into (2.9) and distributing the inner product
linear operator to each term in the residual yields
(2.10)〈

M∑
n=0

dζn
dt

φn(x), φm(x)

〉
−
〈
f

(
M∑

m̂=0

ζm̂(t)φm̂(x)

)
, φm(x)

〉
+

〈
M∑
n=0

μnζn(t)φn(x), φm(x)

〉
= 0.

Further simplification removes spatially independent terms from the inner products and ar-
ranges the terms in the order that they were in (2.2),
(2.11)

M∑
n=0

dζn
dt

〈φn(x), φm(x)〉 =
〈
f

(
M∑

m̂=0

ζm̂(t)φm̂(x)

)
, φm(x)

〉
−

M∑
n=0

μnζn(t)〈φn(x), φm(x)〉.

Because of the orthogonality of our basis functions, (2.11) can be reformulated to express the
evolution of the amplitudes as

(2.12)
dζm
dt

=

〈
f
(∑M

m̂=0 ζm̂(t)φm̂(x)
)
, φm(x)

〉
〈φm(x), φm(x)〉 − μmζm(t) for m = 0, . . . ,M,

which yields a system of R(M + 1) ODEs. We define the reactions’ contribution to the
amplitude evolution as

(2.13) Ω̇m(ζm̂) =

〈
f
(∑M

m̂=0 ζm̂(t)φm̂(x)
)
, φm(x)

〉
〈φm(x), φm(x)〉 .
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To obtain the exact solution of (2.2), the residual must be driven to zero, which requires
the limit of M → ∞. In this sense, the PDE of (2.2) can be considered to be an infinite set
of ODEs. While the exact solution to an infinite-dimensional system is intractable, approxi-
mations with finite M project the trajectories of solutions to the infinite-dimensional system
onto a finite-dimensional AIM [31]. The dynamics on this finite-dimensional approximation
are governed by a system of ODEs,

(2.14)
dζm
dt

= Ω̇m(ζm̂)− μmζm for m, m̂ = 0, . . . ,M.

Robinson [31, p. 387] shows that under certain conditions, inertial manifolds exponentially
attract all of the trajectories of solutions to PDEs. Since the diffusion operator we are mod-
eling is dissipative, and since we truncate the high frequency (and therefore fastest decaying)
amplitudes in (2.1) and (2.2), we assume the AIM will also exponentially attract all trajec-
tories of solutions to our PDEs. Our approximate solutions are obtained by integrating this
finite-dimensional system of ODEs to obtain the amplitude evolution and then employing
(2.4) to reconstruct an approximation of z(x, t). We find that these assumptions provide re-
alistic approximations which compare favorably to well-resolved simulations. The evolution
of amplitudes in (2.14) is forced by a nonlinear function, Fm(ζm̂) = Ω̇m(ζm̂) − μmζm(t), for
m, m̂ = 0, . . . ,M . The projection of the function f(z) onto the AIM, Ω̇m(ζm̂), represents the
rate of change of each amplitude due to reaction, and the projection of L (z) onto the AIM,
μmζm(t), represents the contribution from diffusion.

In the case where the Galerkin projection is truncated at M = 0, the spatially homoge-
neous case is recovered, and (2.14) reduces to

(2.15)
dζ0
dt

= Ω̇0(ζ0).

If our spatially homogeneous basis function is unity, φ0 = 1, then (2.15) is identical to the
spatially homogeneous system in the original variables,

(2.16)
dz

dt
= f(z).

Since many manifold methods, including the SIM, focus on the spatially homogeneous system,
we consider this case for comparison. Since spatially homogeneous dynamics are present in a
subspace of all truncations of this Galerkin projection, we can use the results from the higher-
order truncations to identify deviations from the slow dynamics of the spatially homogeneous
approximation. The next two sections (2.1 and 2.2) provide background for the physical
equations which are modeled. Readers not interested in these details of physical chemistry
are directed to section 2.3.

2.1. Governing equations. We now specialize (2.2)–(2.3) to consider a closed, isothermal,
isochoric, reaction-diffusion system of ideal gases which are described by Dalton’s law and
detailed mass-action Arrhenius kinetics. Our system consists of N species composed of L
elements interacting in J reactions. We model one-dimensional spatial dynamics using Fick’s
law of diffusion with a single constant mass diffusivity and neglect advection. Our notation
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closely follows that of Al-Khateeb et al. [18], where superscripts (o), (∗), and (e) denote
evaluation at reference pressure, initial state, and equilibrium, respectively, and quantities
presented with an overbar (̄ ) denote evaluation on a per-mole basis.

The governing equations for our reaction-diffusion system are the species evolution equa-
tions,

(2.17) ρ
∂Yi
∂t

= M̄iω̇i − ∂ji
∂x

for i = 1, . . . , N,

where Yi, ji, ω̇i, and M̄i are mass fraction, diffusive mass flux, molar production rate, and
molecular mass of species i, respectively; ρ is the density, which remains constant for this
closed isochoric system. Note that ω̇i is standard notation for Arrhenius kinetics; the dot
does not denote a time derivative.

We allow the initial conditions for each species to be arbitrary functions in space,

(2.18) Yi(x, t = 0) = Y ∗
i (x) for i = 1, . . . , N,

and we model homogeneous Neumann boundary conditions,

(2.19)
∂Yi
∂x

∣∣∣∣
x=0

=
∂Yi
∂x

∣∣∣∣
x=�

= 0 for i = 1, . . . , N.

We consider a general set of J reactions with N species, χi, i = 1, . . . , N ,

(2.20)
N∑
i=1

ν ′ijχi �
N∑
i=1

ν ′′ijχi,

where j = 1, . . . , J . The forward and reverse stoichiometric coefficients, ν ′ij and ν ′′ij, are
combined to a single net stoichiometric coefficient,

(2.21) νij = ν ′′ij − ν ′ij ,

such that each reaction can be represented as

(2.22)
N∑
i=1

χiνij = 0 for all j = 1, . . . , J.

Note that νij has dimension N×J and rank R, where R ≤ N −L. Stoichiometric constraints,
which require elements to be conserved in each reaction, can be written as

(2.23)

N∑
i=1

ϕliνij = 0 for l = 1, . . . , L and j = 1, . . . , J,

where ϕli is the number of elements, l, in species i; this constrains νij to be in the right null
space of ϕli.D
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2.2. Constitutive equations. To complete the system, the following constitutive equa-
tions are specified. The mass flux is given by Fick’s law of diffusion,

(2.24) ji = −ρD∂Yi
∂x

for i = 1, . . . , N,

where D is the constant species mass diffusivity. The spatial gradient of mass flux is a self-
adjoint, positive semidefinite, linear differential operator which is in the form of L from (2.14).
As a result of (2.24), along with the homogeneous Neumann boundary conditions, there is no
mass flux at either boundary. The pressure, P , is given by the ideal gas equation of state for
a mixture that obeys Dalton’s law:

(2.25) P = ρR̄T

N∑
i=1

Yi
M̄i
,

where R̄ = 8.314 × 107 erg/(mol K) is the universal gas constant, and T is the constant
temperature. The reaction source terms, ω̇i, are given by detailed mass-action Arrhenius
kinetics:

ω̇i =

J∑
j=1

νijrj for i = 1, . . . , N,(2.26a)

rj = kj

(
N∏
i=1

(
ρYi
M̄i

)ν′ij
− 1

Kc
j

N∏
i=1

(
ρYi
M̄i

)ν′′ij
)

for j = 1, . . . , J,(2.26b)

kj = ajT
βj exp

(−Ēj

R̄T

)
for j = 1, . . . , J,(2.26c)

Kc
j =

(
P o

R̄T

)∑N
i=1 νij

exp

(
−∑N

i=1 μ̄
o
i νij

R̄T

)
for j = 1, . . . , J,(2.26d)

μ̄oi = M̄i(hi − Tsoi ) for i = 1, . . . , N,(2.26e)

where rj, kj , and Kc
j are the reaction rate, Arrhenius rate, and equilibrium constant of

reaction j, respectively, and μ̄oi is the chemical potential of species i evaluated at the ref-
erence pressure, P o. The Arrhenius rate depends on the collision frequency factor, aj, the
temperature-dependency exponent, βj , and the activation energy, Ēj; the equilibrium con-
stant depends on the reference pressure and chemical potentials; and the chemical potential
depends on a specific enthalpy, hi, and the specific entropy evaluated at the reference pressure,
soi . Equations (2.17)–(2.19) and (2.24)–(2.26) form a complete set.

2.3. Model reduction. In this section, we will show how the state variables in the gov-
erning and constitutive equations will reduce to a system of the form of (2.1) in the reduced
species concentrations, zi, which will be defined.

2.3.1. Generalized Shvab–Zel’dovich relations. First, we implement a reduction tech-
nique using the generalized Shvab–Zel’dovich relations similar to the reduction found in Lam
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and Bellan [47]. Similar to (2.23), we use a modified stoichiometric coefficient matrix, ϕ̂li,
that spans the left null space of matrix νij ,

(2.27)

N∑
i=1

ϕ̂liνij = 0 for l = 1, . . . , L̂ and j = 1, . . . , J,

to replace L̂ differential equations with algebraic constraints. We note that L̂ = N−R because
of the dimension and rank of νij. This reduction allows algebraic constraints (which enforce
the stoichiometric constraints of the chemical system) to couple the evolution of L̂ species to
a reduced set of R species. Note that L̂ ≥ L is the total number of linear constraints for the
reaction mechanism, which includes all L stoichiometric constraints, as well as any others.
Operating on the molar production rates, (2.26a), with ϕ̂li, and summing over all species, i,
we get

(2.28)

N∑
i=1

ϕ̂liω̇i =

N∑
i=1

ϕ̂li

J∑
j=1

νijrj =

J∑
j=1

rj

N∑
i=1

ϕ̂liνij = 0 for l = 1, . . . , L̂.

We apply the operator ϕ̂li to (2.17), use the diffusive mass flux from (2.24), and sum over all
species to obtain

(2.29)
∂

∂t

(
N∑
i=1

ϕ̂li
Yi
M̄i

)
−D

∂2

∂x2

(
N∑
i=1

ϕ̂li
Yi
M̄i

)
=

N∑
i=1

ϕ̂liω̇i = 0 for l = 1, . . . , L̂.

We now restrict our evaluation to systems whose initial conditions are spatially homogeneous
in the values

∑N
i=1 ϕ̂liYi/M̄i, for l = 1, . . . , L̂, which implies the initial element distribution

is spatially homogeneous, as would typically be found in premixed combustion. Since the
homogeneous Neumann boundary conditions yield no perturbations in the spatial distributions
of these linear combinations of species, (2.29) can be integrated to yield

(2.30)

N∑
i=1

ϕ̂li
Yi
M̄i

=

N∑
i=1

ϕ̂li
Y ∗
i

M̄i
for l = 1, . . . , L̂;

therefore, these linear combinations of species will remain spatially homogeneous for all time.
Note that individual species are not required to be spatially homogeneous; only the distribu-
tion of the linear constraints (i.e., elements) given in (2.30) has this requirement. The set of L̂
algebraic relations implies that we need not solve for the dynamics of all N species. Instead,
we focus our attention on R = N − L̂ reduced species and then use (2.30) to determine the
dynamics of the remaining species.

2.3.2. Transformation to reduced variables. Following Ren et al. [9] and Al-Khateeb et
al. [18], we now transform the mass fractions into specific mole concentrations, ẑi, where

(2.31) ẑi ≡ Yi
M̄i

for i = 1, . . . , N.
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570 J. D. MENGERS AND J. M. POWERS

We can use the constraints in (2.30) to obtain a set of reduced variables. We choose the first
R linearly independent species as our reduced variables, zn, n = 1, . . . , R, and then couple the
values of ẑi for i = 1, . . . , N to those reduced variables by the linear relation

(2.32) ẑi(x, t) = zi +
R∑

n=1

Dinzn(x, t) for i = 1, . . . , N.

Here zn are the R reduced specific mole concentrations, zi are the values of specific mole
concentration when zn = 0 mol/g for all n = 1, . . . , R, and Din is a coefficient matrix of
dimension N × R that couples the variations in zn to ẑi. We define Din to be an N × R
full rank matrix that spans the column space of νij,

∑N
i=1 ϕ̂liDin = 0 for l = 1, . . . , L̂ and

n = 1, . . . , R. This reduction is not unique. The following is a technique to obtain Din: reduce
the transpose of νij to a row-echelon form, truncate the final J−R rows of zeros in this echelon
form, and take the transpose of this truncation to form Din. In this construction of Din, the
first R rows form a submatrix which is an R × R identity matrix; this fact, along with the
choice of zi = 0 mol/g for i = 1, . . . , R, renders

(2.33) zi = ẑi for i = 1, . . . , R.

This leaves the initial and boundary conditions in the reduced variables as

(2.34) z∗i =
Y ∗
i

M̄i
for i = 1, . . . , R

and

(2.35)
∂zi
∂x

∣∣∣∣
x=0

=
∂zi
∂x

∣∣∣∣
x=�

= 0 for i = 1, . . . , R.

The remaining zi, i = R+ 1, . . . , N , are chosen to satisfy the L̂ algebraic constraints, (2.30),
which are simplified to

(2.36)

N∑
i=1

ϕ̂li

(
zi +

R∑
n=1

Dinzn

)
=

N∑
i=1

ϕ̂liz
∗
i for l = 1, . . . , L̂

and have the solution

(2.37) zi = z∗i −
R∑

n=1

Dinz
∗
n for i = R+ 1, . . . , N.

Substituting specific mole concentrations, (2.31), along with the constitutive equation for
mass flux, (2.24), into (2.17) yields N evolution equations for ẑi, i = 1, . . . , N , where only the
first R equations are linearly independent. Therefore, we consider only the evolution equations
for the reduced variables,

(2.38)
∂zi
∂t

=
ω̇i(zn)

ρ
+D

∂2zi
∂x2

for i, n = 1, . . . , R,

where we define a scaled chemical source term, fi(zn) = ω̇i(zn)/ρ, and diffusive flux term,
L (zi) = −D ∂2zi/∂x

2. Equation (2.38) is the final form considered and is in a form identical
to (2.2).
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2.3.3. Galerkin reduction to ODEs. To analyze (2.38), we apply a Galerkin projection
onto an AIM [31]. We accomplish this by assuming the reduced variables are approximated
in the form of (2.4),

(2.39) zi(x, t) ≈
M∑

m=0

ζi,m(t)φm(x) for i = 1, . . . , R,

where φm(x) are chosen as scalar basis functions and ζi,m(t) are the corresponding time-
dependent amplitudes of species i. For a given domain length, we choose the truncation of
our approximation by setting M to a value above which the amplitude evolution is dominated
by diffusion; diffusion causes the amplitudes, ζi,m for all i and m > M , to decay rapidly before
substantial reaction dynamics occur. We choose φm = cos(mπx/�), which is a complete or-
thogonal basis in the limit asM → ∞, and the corresponding eigenvalues are nonnegative and
real, μm = Dm2π2/�2. Our solution is decomposed into a Fourier cosine series whose m = 0
amplitudes model the spatially homogeneous components and whose m > 0 amplitudes model
the spatial variations. By substituting (2.39) into (2.38) and taking the inner product with
each basis function, φn(x), we obtain a finite system of ODEs for the evolution of the ampli-
tudes in the form of (2.12). Since our molar production rates are low-order polynomials and
our basis functions are cosines, the integration of the Ω̇m(ζm̂) terms in (2.13) can be performed
analytically using trigonometric identities, as shown in Appendix A. We can therefore focus
on the evaluation of our finite-dimensional system in the form of (2.14),

(2.40)
dζi,m
dt

= Ω̇i,m(ζj,n)− Dm2π2

�2
ζi,m for i, j = 1, . . . , R and m,n = 0, . . . ,M.

The initial conditions of the reduced species amplitudes are given by

(2.41) ζi,m(0) =
〈φm, z∗i 〉
〈φm, φm〉 for i = 1, . . . , R and m = 0, . . . ,M.

For very small �, a truncation at M = 0 is appropriate, in which case (2.40) and (2.41) reduce
to a spatially homogeneous system in the form of (2.16),

dzi
dt

= fi(zn) for i, n = 1, . . . , R,(2.42)

zi(0) = z∗i for i = 1, . . . , R.(2.43)

For this to be the case, � must be sufficiently small such that the diffusion term, Dm2π2/�2,
will dominate the evolution equation for m ≥ 1. At this small length scale, diffusion alone will
cause all spatial inhomogeneities to equilibrate quickly, and the remaining reaction dynamics
can be accurately modeled as the spatially homogeneous system given in (2.42)–(2.43).

3. Methodology. In this section we describe our extension of SIM construction from
spatially homogeneous systems to reaction-diffusion systems and describe some of the rami-
fications of our approach. The approach we take to SIM construction is an extension of the
spatially homogeneous technique given by Davis and Skodje [13] and Al-Khateeb et al. [18].
This technique constructs individual branches of the one-dimensional SIM by integrating a
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572 J. D. MENGERS AND J. M. POWERS

heteroclinic orbit from a nonphysical saddle equilibrium, along its only unstable eigenvector,
to the physical equilibrium sink, which the SIM approaches along the equilibrium’s slowest
eigenvector. We label the nonphysical saddle equilibrium from which a SIM branch emanates
the SIM branch initial condition (SIM-BIC). There is no guarantee that SIM-BICs exist
for every chemical mechanism. The evaluation of the entire dynamical system, including the
equilibria with negative concentrations and other nonphysical mathematical artifacts, provides
useful insights into the physical dynamics, as shown by Davis and Skodje [13] and Al-Khateeb
et al. [18].

This technique is extended to the infinite-dimensional PDEs governing a reaction-diffusion
equation by use of the Galerkin projection onto an AIM, as described in section 2.3.3. This
AIM is an R(M + 1)-dimensional system of ODEs, whose equilibria are amenable to a SIM
construction technique similar to that used for the spatially homogeneous system of ODEs.
Here we make a distinction between our terminology of equilibrium and chemical equilibrium.
What we call an equilibrium is a fixed point in our finite-dimensional projection of an infinite-
dimensional dynamical system which is the steady state solution to (2.2),

(3.1) f(ze)− L (ze) = 0,

with boundary conditions that match (2.3),

(3.2)
∂z

∂x

∣∣∣∣
x=0

=
∂z

∂x

∣∣∣∣
x=�

= 0.

This solution, or equilibrium manifold, is a spatial function, ze(x), which can be approximated
by the steady state solution of the Galerkin projection in (2.14),

(3.3) Fm(ζem̂) = Ω̇m(ζem̂)− μmζem = 0 for m, m̂ = 0, . . . ,M.

The solution to (3.3) is a fixed point in the finite-dimensional phase space which can be
reconstructed into the approximation z̃eM (x) using (2.4). In the M = 0 truncation, the
spatially homogeneous reaction-only equilibria are recovered,

(3.4) f(ze:SH) = 0.

The concentrations of one of these spatially homogeneous equilibria are equal to their chemical
equilibrium values.

The spatially homogeneous equilibria, ze:SH , which satisfy the steady state M = 0
Galerkin projection, (3.4), will have no contribution from the diffusion operator L (ze:SH) = 0
and will also satisfy the full steady state equation, (3.1). The spatially homogeneous equi-
libria are also exact steady state solutions to any Galerkin projection, where ζ0 = ze:SH and
ζm = 0 for m > 0. Furthermore, all spatially homogeneous dynamics of the M > 0 Galerkin
projections occur in a subspace of these larger AIMs; when ζi,m = 0 for all i and for m > 0,
all dynamics occur on the M = 0 AIM, which we call the spatially homogeneous subspace.

For mathematical completeness, we seek additional, spatially inhomogeneous equilibria to
the steady state Galerkin projection, (3.3). Since these solutions require a nontrivial balance
between the irreversible processes of reaction and diffusion, and since we choose to model
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zero-flux boundary conditions, (2.3), the only spatially inhomogeneous equilibria allowed are
nonphysical. This is because the entropy generated in balancing reaction and diffusion has
no means of transferring out of the domain. A different choice of boundary conditions would
remove this restriction.

Since the reaction-diffusion AIM projection has a higher dimension than the spatially
homogeneous system, its Jacobian has additional eigenvalues. We analytically examine the
additional eigenvalues at an arbitrary point in the spatially homogeneous subspace, focus-
ing first on the spatially homogeneous equilibria. From local linear analysis of the spatially
homogeneous system, we find a reaction-only Jacobian matrix defined as

(3.5) Jij =
∂fi
∂zj

for i, j = 1, . . . , R.

This Jacobian has R eigenvalues, λ0,i, i = 1, . . . , R, which we sort from largest to smallest by
their real parts (Re(λ0,i) ≥ Re(λ0,i+1) for i = 1, . . . , R − 1). By defining the local chemical
time scales as the reciprocal of the eigenvalues,

(3.6) τi,0 =
1

|λi,0| for i = 1, . . . , R,

we see that when all eigenvalues have negative real parts (as they do in the neighborhood of
the physical equilibrium), this ordering becomes slowest (at i = 1) to fastest (at i = R). Local
linear analysis of any point in the spatially homogeneous subspace in M > 0 truncations of
the Galerkin projection, (2.40), yields a Jacobian matrix that is of block diagonal form,

(3.7) JAIM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J 0 . . . 0 . . . 0

0 J− π2D
�2

I . . . 0 . . . 0
...

...
. . .

...
...

0 0 . . . J− m2π2D
�2

I . . . 0
...

...
...

. . .
...

0 0 . . . 0 . . . J− M2π2D
�2

I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

as seen from the derivation in Appendix B, where J is the reaction-only Jacobian matrix
evaluated at the spatially homogeneous concentrations, and I and 0 are identity and zero
R×R square matrices, respectively.

The eigenvalues of this block diagonal Jacobian matrix are correlated to the R reaction-
only eigenvalues of J and are given by

(3.8) λi,m = λi,0 − m2π2D

�2
for i = 1, . . . , R and m = 0, . . . ,M.

We label these the diffusion-modified eigenvalues for m ≥ 1. Using the same definition of local
time scales as in the spatially homogeneous case, we find that

(3.9) τi,m =

∣∣∣∣λi,0 − m2π2D

�2

∣∣∣∣
−1

for i = 1, . . . , R and m = 0, . . . ,M,
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where we see that these diffusion-modified time scales have a contribution from reaction, λi,0,
and a contribution from diffusion, μ2mD; therefore, we define a diffusion time scale for each
spatially inhomogeneous Fourier mode:

(3.10) τD,m =
�2

m2π2D
for m = 1, . . . ,M.

Since the diffusion contribution to the modified eigenvalues is always negative, the addition of
diffusion provides a stabilizing effect (the eigenvalues become more negative). For equilibria
with positive chemical eigenvalues, λi,0 > 0, (3.8) identifies critical length scales where the
diffusion-modified eigenvalue will be zero, �c = mπ

√
Dτi,0; this result is similar to that of

Al-Khateeb, Powers, and Paolucci [44].
We note that our boundary conditions and basis functions allow a symmetry in the dy-

namics in the Galerkin projection of our system. The initial conditions of z∗i (x) that satisfy
the homogeneous Neumann boundary conditions will admit the evolution of all zi(x, t) for all
i = 1, . . . , R. A symmetric initial condition, z∗i (�−x), will also satisfy the boundary conditions
and will have a symmetric evolution of zi(� − x, t) that satisfies the governing PDE. When
projected into the Fourier domain, the amplitudes of zi(x, t) are ζi,m(t), while the amplitudes
of zi(�− x, t) are (−1)mζi,m(t). This symmetry means that phase space will have a reflective
symmetry about the spatially homogeneous subspace, ζi,m(t) = 0 for all i = 1, . . . , R and
m = 1, . . . ,M . We restrict our analysis to the half of phase space where ζ1,1(t) ≥ 0 since the
dynamics of the other half will be symmetric. We clarify that this discussion is describing two
solutions which exhibit a reflective symmetry about x = �/2, not whether solutions themselves
are symmetric or asymmetric.

4. Model problems.

4.1. Simple chemical mechanism. In this section we will examine a simple problem with
R = 1 in the form of (2.2). We then identify steady state solutions and their linear stability,
find a critical length scale where a supercritical pitchfork bifurcation occurs, and show spectral
convergence of the solutions as more Galerkin modes are included. Then, we identify SIM-
BICs as the stable branches of the pitchfork bifurcation and compare the phase portraits of
the spatially homogeneous system and M = 1 Galerkin projection.

The governing equation we model is

(4.1)
∂z

∂t
= −K(z − C1)(z − C2) +D

∂2z

∂x2
,

where K > 0 and C1 ≤ 0 < C2, and whose boundary conditions are consistent with (2.3),

(4.2)
∂z

∂x

∣∣∣∣
x=0

=
∂z

∂x

∣∣∣∣
x=�

= 0.

We take ze(x) to be a steady solution to (4.1)–(4.2) and evaluate its linear stability. We assume
the initial conditions are perturbed from the steady state solution, z(x, 0) = ze(x) + εA(x, 0),
where A(x, 0) is O(1), and 0 < ε 1, and evaluate the subsequent evolution of

(4.3) z(x, t) = ze(x) + εA(x, t).

D
ow

nl
oa

de
d 

04
/2

4/
13

 to
 1

29
.7

4.
16

2.
12

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REACTION-DIFFUSION SLOW INVARIANT MANIFOLDS 575

This is equivalent to linearizing this equation around the steady state, ze(x). When we
substitute the solution from (4.3) into (4.1), collect the terms that are O(ε), and assume a
separation of variables, A(x, t) = G(x)H(t), we obtain two linear ODEs,

dH

dt
= γH(t),(4.4)

d2G

dx2
=

(
γ +K(2ze(x)− C1 − C2)

D

)
G(x),(4.5)

where γ is a constant. This result is identical to the Galerkin method for the PDE linearized
about ze(x). The solution to (4.4) is an exponential, H(t) = H(0) exp(γt), where the sign
of γ indicates the stability of the solution. The solution to (4.5) for a general steady state
equilibrium, ze(x), typically requires numerical evaluation; however, if we evaluate spatially
homogeneous equilibria, ze(x) = ze:SH , the solutions to (4.5) that match the boundary con-
ditions are of the form

(4.6) G(x) = cos

(√
−γ −K(2ze:SH − C1 − C2)

D
x

)
,

where the coefficient of x in the argument of the cosine function must be an integer multiple
of π/�. Therefore, we can solve for the stability parameter, γ, which yields the spectrum of
values,

(4.7) γ = −K(2ze:SH − C1 − C2)− m2π2D

�2
,

for any integer value of m ≥ 0. Note that γ is composed of two terms: λ0 = −K(2ze:SH −
C1 − C2), which is the eigenvalue of the reaction-only system, and −μ2mD = −m2π2D/�2,
which is the diffusion-modification term. Therefore, the linear stability analysis for a spatially
homogeneous equilibrium is consistent with the Jacobian eigenvalue analysis in section 3. We
also find that for a spatially inhomogeneous solution, the eigenvalues of the Jacobian of the
Galerkin projection are a good approximation of the stability parameter, γ.

By inspection, we find two spatially homogeneous steady state solutions to (4.1)–(4.2)
with finite concentrations, ze:SH = C1 and ze:SH = C2. There are other steady solutions with
finite concentrations which are spatially inhomogeneous; their composition and stability are
dependent on the reaction parameters and the domain length, which will be illustrated in an
upcoming example. The reaction-only eigenvalue of the spatially homogeneous equilibrium,
ze:SH = C2, is negative, λ0 = −K(C2−C1) < 0, and the diffusion-modification contribution is
nonpositive; therefore, all values of γ are negative, and ze:SH = C2 is stable. The equilibrium
ze:SH = C1 has a positive reaction-only eigenvalue, λ0 = −K(C1 − C2) > 0. Since the m = 0
mode has no diffusion contribution, γ for this mode will also be positive, and ze:SH = C1 will
be unstable for at least one mode; however, there is an infinite spectrum of values for γ, so
for any finite domain length, there will be modes where the negative diffusion contribution
has stabilized the positive reaction contribution, resulting in a stable mode. The number of
unstable modes depends on the domain length �.
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We now examine a simple reaction mechanism,

(4.8) B +B � A+A,

with N = 2 species, J = 1 reaction, and L̂ = 1 constraint, which can be modeled by a system
in the form of (4.1). By choosing i = {1, 2} to correspond to the species {A,B}, respectively,
the rate equation for this reaction is

(4.9) r = k

((
ρY2
M̄

)2

− 1

Kc

(
ρY1
M̄

)2
)
.

The mole fractions must sum to unity, Y1+Y2 = 1, enabling the reduction shown in section 2.3.
Since R = N − L̂ = 1, we choose to model the evolution of species A as the reduced variable
z = Y1/M̄ and algebraically solve for the evolution of B with the mole fraction constraint.
This yields the evolution equation in the form of (2.38),

(4.10)
∂z

∂t
= 2ρk

((
1

M̄
− z

)2

− z2

Kc

)
+D

∂2z

∂x2
.

We choose parameters to induce scales that are loosely correlated to those found in reactive
gases at atmospheric pressure, k = 2.5 × 108 cm3/mol/s, M̄ = 1 g/mol, Kc = 0.25, ρ =
1×10−3 g/cm3, andD = 1 cm2/s. The resulting evolution equation is in the form of (4.1) with
parameters K = 2kρ(1− 1/Kc) = 1.5× 106 g/mol/s, C1 =

√
Kc/((

√
Kc− 1)M̄) = −1 mol/g,

and C2 =
√
Kc/((

√
Kc + 1)M̄) = 1/3 mol/g:

(4.11)
∂z

∂t
= −1.5× 106 (z + 1)

(
z − 1

3

)
+
∂2z

∂x2
.

This system has two finite spatially homogeneous equilibria,

(4.12) ze:SH =

{
−1,

1

3

}
mol/g,

which we label R1 and R2, respectively. The reaction-only eigenvalues of the linearized system
about these equilibria are λ0 = 2×106 s−1 at R1 and λ0 = −2×106 s−1 at R2. We know that
R2 is linearly stable since all of the values of γ from its linear stability analysis are negative,
independent of domain length. This result for the stability, along with the fact that both
species concentrations are positive, indicates that R2 is the physical equilibrium. Evaluating
R1, we find that the m = 0 mode is unstable, but the sign of γ for larger values of m depends
on the domain length.

In addition to evaluating the stability of the spatially inhomogeneous modes at R1, we now
find any additional spatially inhomogeneous steady solutions and evaluate their stability. The
Galerkin projection admits an infinite number of steady solutions in the M → ∞ limit. Most
of these equilibria are complex and/or singular; we are interested only in the real nonsingular
steady state solutions. By identifying all the roots with an algebraic analysis for a low-
order system (M = 3 Galerkin projection) and resolving these roots to a higher-order system
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Figure 2. Steady state solutions for the B +B � A+ A mechanism.

(M = 25) using Newton’s method, we find that the number of real nonsingular solutions
increase as � increases. We present the results for three different domain lengths: � = 5 μm,
22.5 μm, and 100 μm.

For � = 5 μm, the only steady state solutions we identify are the spatially homogeneous
equilibria, R1 and R2; we find R1 to have only one positive value of γ for m = 0, and it is
therefore unstable only in the spatially homogeneous mode. For � = 22.5 μm, we find that
R1 is unstable in two modes (m = 0 and m = 1); also, we identify two real nonsingular
spatially inhomogeneous steady solutions, which each have only one positive value of γ. For
� = 100 μm, R1 has five unstable modes for m = 0 through m = 4. At this length we identify
eight real nonsingular spatially inhomogeneous steady solutions, all of which are unstable in
some modes; two of these solutions have one positive value of γ, two have two, two have three,
and two have four. The spatial reconstructions of the steady solutions in theM = 25 Galerkin
approximation are shown in Figure 2 for � = 22.5 μm and for � = 100 μm, where the value
m in R̂1,m indicates the number of unstable modes in the spatially inhomogeneous solutions.
Some of the solutions for � = 100 μm with low values of m are quite similar and are therefore
hard to discern in Figure 2; the spatially homogeneous R2 at z = 1/3 mol/g (black) and one
R̂1,2 (blue dash-dashed) are both nearly obscured by half of each R̂1,1 solution (red dashed),
which cross at x = 50 μm.

We see from these examples that for larger values of �, more of the modes in the neighbor-
hood of R1 become unstable. These transitions from stability to instability occur at integer
multiples of a critical domain length,

(4.13) �c = π

√
D

λ0
=

π√
2× 106

= 22.214 μm,

where the m = 1 diffusion-modification time scale is equal to the unstable reaction time scale.
The critical length scale is coupled to a chemical time scale by diffusion: �c = π

√
Dτ0.

Therefore, when � < �c, R1 will have one positive eigenvalue and will in fact be a SIM-
BIC for the system; however, for domain lengths longer than �c, R1 will have more than one
positive eigenvalue and will no longer qualify as a candidate equilibrium for the SIM-BIC. We
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Figure 3. Locus of real equilibria in the neighborhood of R1 for B +B � A+ A.

therefore seek other candidate equilibria of the steady state Galerkin projection, (3.3), to fill
the role of SIM-BIC for � > �c.

When the domain length is an integer multiple of the critical length scale, � = m�c, (4.13)
predicts one of the spectra of eigenvalues at R1 to be equal to zero. At these length scales,
we numerically identify supercritical pitchfork bifurcations at R1; two additional equilibria
undergo a transition from complex to real through the spatially homogeneous equilibrium R1.
These equilibria have spatial symmetry, so we label them R̂+

1,m and R̂−
1,m. This bifurcation

can be seen in Figure 3 for m = 1, where the bold branches have one positive eigenvalue and
the dashed branch has two. Since the dynamics of R̂+

1,1 and R̂−
1,1 are identical, as shown in

section 3, we can focus our analysis on one root, R̂+
1,1 (with ζ1 > 0), and for simplicity drop

the plus sign superscript. For � > �c the R̂1,1 equilibria each have one positive eigenvalue and
are candidates for the SIM-BIC.

We examine the solution whose initial conditions are in the neighborhood of R̂1,1, per-
turbed along the eigenfunction whose eigenvalue is positive, and find that it approaches the
physical equilibrium along its slowest spatially homogeneous eigenfunction. (Note that an
eigenvector of the Jacobian of (3.3) approximates an eigenfunction of (3.1) and is referred to
as such.) Therefore, the R̂1,1 equilibria meet the requirements to formally become SIM-BICs
for all � > �c.

Subsequent bifurcations at longer domain lengths exhibit similar properties; additional
equilibria pairs, R̂1,m, correspond to bifurcations at integer multiples of the critical length
scale. The bifurcation at � = m�c corresponds to the mth Fourier mode’s wavelength being
identical to the critical length scale. Linear stability analysis of these equilibria shows that
for � > m�c, R̂1,m will have only m positive eigenvalues, and the remaining spectrum of
eigenvalues will be negative.

Each R̂1,m equilibrium is a fixed point on the finite-dimensional AIM that converges to an
equilibrium manifold in the limit as M → ∞. To show the convergence for R̂1,1, we quantify
the error by comparing the steady solution in a lower-order truncation to its corresponding
solution in an M = 25 Galerkin projection and find the relative root mean square error, Ei,D
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Figure 4. Relative error of R̂1,1 approximations for B +B � A+A.

which is defined as

(4.14) Ei =
(∫ �

0 (z̃ei − z̃e25)
2 dx∫ �

0 (z̃e25)
2 dx

) 1
2

for i = 1, . . . , 24.

This convergence is shown in Figure 4 for � = 22.5 μm and � = 100 μm. The error of the
spatially inhomogeneous steady state solution provides a good metric for the convergence
of the Galerkin projection at a particular length scale, without imposing an arbitrary initial
condition or requiring time integration. We see that the error for � = 100 μm converges slowly,
remaining relatively large, while the error for � = 22.5 μm converges rapidly. This shows that
for short domain lengths, where � � O(�c), lower-order truncations not only provide accurate
representation of the equilibrium manifold but also accurately describe the reaction-diffusion
dynamics.

We now evaluate approximations of (4.11) with lower-order Galerkin projections. In the
limit of an infinitesimal domain length, � ↓ 0, the diffusion terms in the projection become
infinitely fast for all m > 0, any spatial inhomogeneities equilibrate immediately, and the
system can be modeled as spatially homogeneous,

(4.15)
dz

dt
= −1.5× 106 (z + 1)

(
z − 1

3

)
.

In addition to R1 and R2, this system also has two infinite equilibria, ze:SH → +∞ mol/g,
labeled I1, and z

e:SH → −∞ mol/g, labeled I2. These infinite equilibria are identified using
a Poincaré sphere mapping [48]; more details can be found in Appendix C. Evaluating the
infinite equilibria, we find that I1 is unstable and I2 is stable. The rate of change, Ω̇, is
plotted in Figure 5; the physical domain, where both species have positive concentrations, is
shown as a gray-shaded region. For this R = 1-dimensional spatially homogeneous system,
a one-dimensional SIM is degenerate; however, we construct it to provide an example of
how diffusion modifies the dynamics of a spatially homogeneous system. In one-dimensional
systems, there are only sinks and sources, so the SIM-BIC in this case will be a source since
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Figure 5. Spatially homogeneous rate of change, equilibria, and SIM branches for B +B � A+ A.
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Figure 6. Poincaré sphere projection showing the M = 1 Galerkin dynamics of B +B � A+ A.

it must have at least one positive eigenvalue. To construct a branch of the SIM, we integrate
a system trajectory from the SIM-BIC to the physical equilibrium sink. The two SIM-BICs
for this system are at R1, z

e = −1, and at I1, positive infinity; the SIM branches are shown
as a bold red line in Figure 5 and constitute the entire phase space between these SIM-BIC
equilibria and the physical sink. We will focus our analysis of the reaction-diffusion system
on the finite branch of the SIM between R1 and R2.

We now examine the performance of the spatially inhomogeneous diffusion-modified one-
dimensional SIM. In order to evaluate these roots in the entire phase space, we use a Poincaré
sphere mapping [48]. Figure 6 shows a projection of the Poincaré sphere mapping of the
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M = 1 truncation at three domain lengths which demonstrate the bifurcation of the SIM-BIC
and the resulting changes in dynamics, where, as shown in Appendix C, η0 and η1 correspond
to ζ0 and ζ1, respectively. In Figure 6(a), where � = 5 μm < �c, the diffusion time scale is
much faster than the reaction time scale. At this length scale the SIM-BIC still resides at the
spatially homogeneous R1, whose eigenvalues are λ = {2×106,−3.748×107} s−1. This causes
the slow dynamics to be driven by the reaction mechanism only, and therefore the spatially
homogeneous SIM remains the SIM for this reaction-diffusion system. Because the diffusion
time scale is faster than the reaction time scale at this length, the trajectories all rapidly
collapse onto the η0 axis, the spatially homogeneous subspace. This results in the spatially
homogeneous SIM accurately describing the long time dynamics of the system.

When the length scale is increased to � = 22.5 μm > �c, as seen in Figure 6(b), the diffusion
time scale is marginally slower than the unstable reaction time scale at R1. At this domain
length, the first pitchfork bifurcation has three real branches, R1 and both R̂1,1 roots. The
slower diffusion means it does not provide a sufficient stabilizing effect on λ1,1, so R1 has two
positive eigenvalues, λ = {2× 106, 5.045× 104} s−1, and is therefore not a candidate for SIM-
BIC; however, R̂1,1 each have only one positive eigenvalue, λ = {2.047×106,−9.734×104} s−1,
and they formally assume the role as SIM-BIC; however, when we consider the eigenvalues
of the physical equilibrium, R2, λ = {−2 × 106,−3.950 × 106} s−1, we find that they have
become much closer to the same order of magnitude. This lack of spectral gap indicates that
the trajectories in the � = 22.5 μm case will not collapse onto either one-dimensional SIM as
quickly as they do for shorter lengths. In fact, for lengths on the order of and longer than �c,
trajectories define two- or higher-dimensional manifolds that describe the long time dynamics.
Therefore, both the spatially homogeneous and diffusion-modified one-dimensional SIMs in
Figure 6(b) appear less attractive than the SIM in Figure 6(a), where the trajectories in the
latter figure approach the one-dimensional SIM with higher curvature than the former.

We consider a still longer length scale, � = 100 μm, as seen in Figure 6(c1). At this length,
the m = 1 diffusion time scale is too slow to provide an appreciable stabilizing effect on λ1,1,
and R1 has two nearly identical positive eigenvalues, λ = {2 × 106, 1.9013 × 106} s−1. R̂1,1

remains the formal SIM-BIC for this length scale with eigenvalues λ = {2.048× 106 ,−1.949×
106} s−1. The ratio of the two eigenvalues associated with the slowest modes in the neigh-
borhood of the physical equilibrium, R2, approaches unity at this length scale, and, therefore,
trajectories in this region do not collapse onto the one-dimensional SIM; however, the trajec-
tories in the neighborhood of the SIM-BIC, R̂1, collapse onto the SIM with higher curvature
than they did for the � = 22.5 μm case. This is because the magnitude of the stable eigen-
value is on the same order of magnitude as the unstable eigenvalue, making for a saddle whose
trajectories collapse onto the unstable eigenvector. The SIM in Figure 6(c1) does not appear
to approach R2 along the slowest (spatially homogeneous) eigenvector, but upon a linear eval-
uation of the SIM in the neighborhood of R2, a point on the SIM at ζ0 = 1/3 − ε, it will
have ζ1 ∼ O(ε1−π2/200) as ε decays to zero, where the exponent, 1− π2/200, is just less than
1. Therefore, as shown in Figure 6(c2), the SIM osculates the ζ0 axis in its approach to R2,
confirming that this manifold meets all of our SIM criteria. The M = 1 truncation at this
length scale is underresolved; however, the dynamics presented in Figure 6(c) are qualitatively
the same as a well-resolved truncation.

This analysis shows that the use of the spatially homogeneous SIM is valid only for � < �c;
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when � > �c, the bifurcation indicates that both reaction and diffusion must be accounted
for in order for a reduced manifold to potentially capture the slow dynamics of the system.
Furthermore, a spectral gap needs to be present for a manifold to attract local trajectories
and accurately capture the slow dynamics; for � > �c, a one-dimensional SIM proves to be
inadequate.

4.2. Zel’dovich mechanism. In this section we examine the Zel’dovich mechanism of
NO production, which is shown in Table 1. We then show the reduction of the stoichiometric
constraints, examine the spatially homogeneous system, identify the critical length where the
SIM-BIC bifurcates, compare local reaction and diffusion time scales, and illustrate the effect
of length scales on the trajectories in the M = 1 Galerkin projection phase space.

Table 1
The Zel’dovich mechanism for NO production.

aj βj Ēj

Reaction [cm3/(mol s) K−βj ] [erg/mol]

N +O2 � NO +O 5.841 × 109 1.01 6195.6
N +NO � N2 +O 21.077 × 1012 0.00 0.0

Al-Khateeb et al. [18] studied the spatially homogeneous Zel’dovich mechanism under
isothermal and isochoric constraints; we extend their analysis to reaction-diffusion systems.
This system displays realistic chemical dynamics and has a slightly higher dimension (R = 2)
than the previous example. There are N = 5 species, J = 2 reactions, and L = 2 elements,
where the species {NO,N,O,O2, N2} correspond to i = 1, . . . , 5. The species-reaction matrix
for this mechanism is

(4.16) νij =

⎡
⎢⎢⎢⎢⎣

1 −1
−1 −1
1 1

−1 0
0 1

⎤
⎥⎥⎥⎥⎦ ,

and the species-element matrix is

(4.17) ϕli =

[
1 1 0 0 2
1 0 1 2 0

]
.

The reaction rates are given by

r2 = k2

(
ρY2
M̄N

ρY4
M̄O2

− 1

Kc
2

ρY1
M̄NO

ρY3
M̄O

)
,(4.18a)

r1 = k1

(
ρY2
M̄N

ρY1
M̄NO

− 1

Kc
1

ρY5
M̄N2

ρY3
M̄O

)
.(4.18b)

This mechanism has one additional constraint; since both reactions are bimolecular, the total
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number of molecules remains constant; therefore, the system has L̂ = 3 algebraic constraints,

CM =
Y1

M̄NO
+

Y2
M̄N

+
Y3
M̄O

+
Y4
M̄O2

+
Y5
M̄N2

,(4.19a)

CN =
Y1

M̄NO
+

Y2
M̄N

+ 2
Y5
M̄N2

,(4.19b)

CO =
Y1

M̄NO
+

Y3
M̄O

+ 2
Y4
M̄O2

.(4.19c)

The variables CM , CN , and CO are constants that are defined by the initial conditions and
correspond to the conservation of total molecules, nitrogen atoms, and oxygen atoms, respec-
tively. We use these algebraic constraints to transform our system into two reduced variables,
choosing specific moles of NO and N , which we represent as z1 and z2, respectively,

z1 =
Y1

MNO
,(4.20a)

z2 =
Y2
MN

.(4.20b)

Using the reduction technique from section 2.3, we find the modified coefficient matrix to be

(4.21) Din =

⎡
⎢⎢⎢⎢⎢⎣

1 0
0 1
0 −1

−1
2

1
2

−1
2 −1

2

⎤
⎥⎥⎥⎥⎥⎦ .

The remaining L̂ = 3 species specific mole values are coupled to z1 and z2 by the algebraic
relations

ẑ3 = ẑ∗3 + z∗2 − z2,(4.22a)

ẑ4 = ẑ∗4 +
1

2
z∗1 −

1

2
z∗2 −

1

2
z1 +

1

2
z2,(4.22b)

ẑ5 = ẑ∗5 +
1

2
z∗1 +

1

2
z∗2 −

1

2
z1 − 1

2
z2.(4.22c)

This system is evaluated at the constant temperature, T = 4000 K, and density, ρ =
1.20024× 10−4 g/cm3, which yields a constant pressure, P = 1.64 atm. The species’ thermo-
dynamic data comes from the CHEMKIN thermodynamic database [49]. The diffusion coefficient,
D = 14.0 cm2/s, is approximated from a weighted average of the ordinary multicomponent co-
efficients in the CHEMKIN TRANSPORT database [50]. We choose initial conditions such that the
values of the constants are CO = CN = 3.3327× 10−2 mol/g and CM = 4.1658× 10−2 mol/g.
The governing equations, when transformed into specific moles, are

∂z1
∂t

= C10 + C11z1 + C12z2 + C13z1z2 + C14z
2
2 +D

∂2z1
∂x2

,(4.23a)

∂z2
∂t

= C20 + C21z1 + C22z2 + C23z1z2 + C24z
2
2 +D

∂2z1
∂x2

,(4.23b)
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Table 2
Values of the coefficients, Cij, for Zel’dovich mechanism evolution equations.

j = 0 j = 1 j = 2 j = 3 j = 4
[mol
g s

] [ 1
s
] [ 1

s
] [ g

mol s
] [ g

mol s
]

i = 1 250.46 −99728 1.1611 × 107 −3.2210 × 109 6.9858 × 108

i = 2 250.46 84697 −1.1656 × 107 −1.8359 × 109 −6.9768 × 108

SIM

−0.01 0 0.01 0.02
−0.02

−0.01

0

0.01

0.02

z1 (mol/g)

z 2
(m
ol
/g

)

R3R2

R1

I1

(a)

−4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x 10
−5

SIM

x 10
−3

z1 (mol/g)

z 2
(m
ol
/g

)

R3

R2

(b)

Figure 7. The spatially homogeneous SIM for the Zel’dovich mechanism.

where the coefficients, Cij , are given in Table 2.
When we evaluate the system in the limit of an infinitesimal domain length, a truncation

at M = 0 is appropriate, and we are left with the spatially homogeneous system,

dz1
dt

= C10 +C11z1 + C12z2 +C13z1z2 + C14z
2
2 ,(4.24a)

dz2
dt

= C20 +C21z1 + C22z2 +C23z1z2 + C24z
2
2 ,(4.24b)

which is the same system described by Al-Khateeb et al. [18]. The phase space for this system
is shown in Figure 7. This system has three finite spatially homogeneous equilibria,

(4.25) ze =

{[ −1.7833 × 10−5

−1.6681 × 10−2

]
,

[ −4.1950 × 10−3

−2.6642 × 10−5

]
,

[
3.0474 × 10−3

2.9446 × 10−5

]}
mol/g,

labeled R1, R2, and R3, respectively. The eigenvalues of the linearized system in the neigh-
borhood of each equilibrium are near R1, λ = {4.1760 × 107, 2.3523 × 107} s−1; near R2,
λ = {7.1039× 105 ,−4.6413× 106} s−1; and near R3, λ = {−1.9129× 105 ,−1.7295× 107} s−1.
R3 is the physical equilibrium sink, while the nonphysical R1 and R2 are of source and saddle
types, respectively; we find that R2 is a SIM-BIC. The second branch of the SIM originates at
a SIM-BIC at z → +∞, I1. We focus our analysis on the SIM that connects R2 to R3. Figure
7(a) shows the physically realizable region shaded gray, individual rate of change vectors as
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)
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τ1 R2
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τD

Figure 8. Local time scales of R2 and R3 for the Zel’dovich mechanism.

arrows, system trajectories as thin green lines, and the SIM’s two branches as bold red lines.
In this system we see a disparity in the two reaction time scales, resulting in high curvature
of trajectories as they approach the SIM, which is shown in the close-up plot of the SIM in
Figure 7(b).

We now evaluate the Galerkin projection to predict the effects of diffusion across finite
length scales. Similar to the results from the example in section 4.1, this system retains
the spatially homogeneous equilibria and gains (among others) pairs of equilibria, R̂2,m, that
bifurcate from the R2 equilibria at integer multiples of a critical length scale,

(4.26) �c = π

√
D

λe:R2
0,1

= 139.5 μm.

This critical length scale is the domain length at which the m = 1 diffusion time scale equals
the unstable reaction time scales at R2; this once again demonstrates that diffusion processes
can couple chemical time scales to length scales: �c = π

√
Dτ0. The bifurcations at �c are of

supercritical pitchfork type, where R̂2,m are real only for domain lengths longer than m�c.
Linear analysis in the neighborhood of R̂2,m reveals each equilibrium has m positive eigenval-
ues; in the neighborhood of R2 there are m positive eigenvalues when the domain length is
between (m− 1)�c < � < m�c. We note that R2 will have a zero eigenvalue for domains that
are an integer multiple of �c as an eigenvalue changes from negative to positive; these zero
eigenvalues correspond to the bifurcations. This can be seen for m = 1 in Figure 8, which
shows the time scales in the neighborhoods of R2 and R3 as a function of domain length, for
the m = 0 and m = 1 modes. For the m = 1 time scales, we see that short domain lengths
are dominated by the diffusion contribution, while long domain lengths are dominated by the
reaction contribution. Where the transition occurs, there is a singularity associated with the
zero eigenvalue and the bifurcation at R2; this occurs at � = �c. Similar results for larger val-
ues of m occur at subsequent bifurcations. To evaluate the quality of the Galerkin projection,
a convergence study was performed. The convergence rates for the R̂2,1 equilibria are similar
to those shown in Figure 4: for short domain lengths, � ∼ O(�c), the approximation converges
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rapidly, while for longer domain lengths, � > �c, it converges more slowly.
We now examine the dynamics of the reaction-diffusion system at five length scales, � =

8.96 μm, 22.4 μm, 56 μm, 140 μm, and 350 μm, in the M = 1 truncation of the Galerkin
projection. For � = 8.96 μm, which is significantly less than �c, the diffusion time scales are
much faster than all of the reaction time scales. This is seen when we examine the eigenvalues
in the neighborhood of R2, λ = {7.1039×105 ,−4.6413×106,−1.7140×108 ,−1.7675×108} s−1.
This leads to a system that essentially behaves like a spatially homogeneous system, which is
demonstrated in Figure 9(a), where the initial spatial inhomogeneities decay rapidly, resulting
in the spatially homogeneous reaction which dictates the long time dynamics.

For � = 22.4 μm, which is still much less than �c, the diffusion time scales are still faster
than all of the reaction time scales, which is evident when examining the eigenvalues in the
neighborhood of R2, λ = {7.1039 × 105,−4.6413 × 106,−2.6828 × 107,−3.2179 × 107} s−1.
Diffusion causes the spatial inhomogeneities to decay before substantial reaction occurs; how-
ever, as seen in Figure 9(b), some reaction processes occur before diffusion has removed the
majority of the spatial inhomogeneities. While the reaction mechanism and spatially homo-
geneous SIM dictate the long time dynamics, diffusion plays a bigger role in the approach to
the SIM.

The next length scale, � = 56 μm, is still less than �c; however, the fundamental diffusion
time scale is now marginally slower than the fast reaction time scales in the neighborhoods of
the R2 and R3 equilibria; the eigenvalues at R2 are λ = {7.1039×105 ,−4.6413×106 ,−3.6957×
106,−9.0474 × 106} s−1. This system no longer behaves like a spatially homogeneous system
since both reaction and diffusion are acting on the same time scales; however, the slowest
dynamics are still captured by the spatially homogeneous SIM since reaction remains the
slowest time scale. This is seen in Figure 9(c), where the initial spatial inhomogeneities do
not decay onto the spatially homogeneous subspace, yet the long time dynamics collapse onto
the spatially homogeneous SIM.

Consider � = 140 μm, which is just slightly longer than �c; therefore, at R2 there are
now two positive eigenvalues, λ = {7.1039 × 105,−4.6413 × 106, 5418.9,−5.3463 × 106} s−1.
The bifurcated equilibrium, R̂2,1, is now real and has only one positive eigenvalue, λ =
{7.2371 × 105,−4.6078 × 106,−10540,−5.4259 × 106} s−1. We predict changes in the slow
dynamics of the system, as is evident in Figure 9(d). For each of the shorter domain lengths,
the fast diffusion causes the spatial inhomogeneities to decay rapidly enough that the spa-
tially homogeneous SIM dictates the long time dynamics of the system; however, at � = �3,
the spatial inhomogeneities persist through the duration of both reaction time scales. The
diffusion-modified one-dimensional SIM for this length scale is shown in Figure 9(c); how-
ever, due to the similarities of the slow reaction and slow diffusion time scales, the long time
dynamics of the system are likely better captured by a two-dimensional manifold. As the
amplitudes of modes with fast time scales decay, the trajectories relax onto a vertical sheet,
where slow reaction and slow diffusion both dictate the dynamics as the trajectory proceeds
toward equilibrium.

For the longest length scale considered, � = 350 μm, the diffusion time scale of the
fundamental Fourier mode is significantly slower than both reaction time scales. We see in
Figure 9(e) that the bifurcated equilibrium, R̂2,1, has become more spatially inhomogeneous,
and the system’s dynamics reflect this change in trajectories with spatial variations that
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Figure 9. M = 1 Galerkin projection phase space for the Zel’dovich mechanism at various �.
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Figure 10. Amplitudes and spatial reconstruction of Zel’dovich mechanism species evolution in M = 25
Galerkin projection.

persist further in the approach to equilibrium. There are still two unstable eigenvalues at
R2, λ = {7.1039 × 105,−4.6413 × 106, 5.9760 × 105,−4.7541 × 106} s−1, and one unstable
eigenvalue at R̂2,1, λ = {9.3244 × 105,−4.2979 × 106,−2.1765 × 105,−1.3993 × 107} s−1.
Similar to the simple reaction mechanism, the diffusion-modified SIM appears to have the
trajectories collapse onto it more than in the � = 140 μm case, but again it requires more
Galerkin modes to provide enough spatial resolution.

In Figure 10 we see the evolution of the two extreme length scales, � = 8.96 μm (a, b)
and � = 350 μm (c, d), calculated in the M = 25 Galerkin projection. The initial conditions
for each are polynomials scaled to each domain length: z∗1(x) = (1.6× 10−2mol/g)(2(x/�)3 −
(x/�)6) and z∗2(x) = (1.6 × 10−2mol/g)(2(1 − x/�)3 − (1 − x/�)6). On the left, Figure 10(a,
c) shows the evolution of the amplitudes of NO (red lines) and N (blue lines), both spatially
homogeneous (bold lines) and inhomogeneous (dashed lines). The spatial approximations of
NO evolution, reconstructed from (2.4), are shown on the right in Figure 10(b, d). Changes
in the spatially homogeneous amplitudes in Figure 10(a, c) show the fast and slow reaction
time scales, which occur at approximately τ1,0 = 5.8 × 10−8 s and τ2,0 = 5.2 × 10−6 s. The
diffusion time scales have drastic changes on the decay rate of the spatial inhomogeneity that
is dependent on length: in the � = 8.96 μm case, the diffusion time scale of the m = 1

D
ow

nl
oa

de
d 

04
/2

4/
13

 to
 1

29
.7

4.
16

2.
12

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REACTION-DIFFUSION SLOW INVARIANT MANIFOLDS 589

mode, τD,1 = 5.8 × 10−9 s, is the fastest, which causes all spatial inhomogeneities to decay
before either reaction time scale; in the � = 350 μm case, the m = 1 diffusion time scale,
τD,1 = 8.9 × 10−6 s, is the slowest, and large spatial inhomogeneities persist until the slow
reaction time scale. The effects of the various diffusion time scales are also apparent in the
spatial reconstruction: for � = 8.96 μm, diffusion causes the spatial inhomogeneities to decay
rapidly, and the long time dynamics are governed by reaction only; for � = 350 μm, the long
time dynamics display both reaction and diffusion processes.

We see that for domains that are shorter than the critical length scale, spatial inhomo-
geneities decay more rapidly than the amplitude of the spatially homogeneous mode with a
slow reaction time scale, and the spatially homogeneous SIM describes the long time dynam-
ics. For domains that are longer than the critical length scale, diffusion time scales are slower
than the slow reaction time scale; therefore, in these longer domains the long time dynamics
display spatial inhomogeneities, and the spatially homogeneous SIM is no longer appropriate
to use as a reduction method.

5. Summary and conclusions. We have extended the robust method of SIM construc-
tion presented by Davis and Skodje [13] to reaction-diffusion systems. Through the use of
a Galerkin projection, we analytically isolated the reaction and diffusion contributions to a
modified time scale associated with each mode of a particular wavelength. We found a crit-
ical length scale at which the slowest diffusion time scale is equal to an unstable reaction
time scale of the spatially homogeneous problem. At this critical length scale, a pitchfork
bifurcation was predicted. When modeling any system with length longer than the critical
value, the canonical slow manifold is no longer the spatially homogeneous SIM. While a one-
dimensional diffusion-modified SIM was constructed, it is not endowed with a wide spectral
gap in its slowest time scales, thus rendering its utility to be of limited value in a reduction
strategy for large scale realistic systems of engineering relevance. We have examined only
small reaction mechanisms with a limited number of Galerkin modes. However, we believe
our conclusions will extend to arbitrarily sized systems. When this is done, be it via addition
of more detailed reactions, more Galerkin modes, or more spatial dimensions, the complexity
of implementing this manifold method in high-dimensional phase space will rapidly overwhelm
most present analysis strategies. This presents a daunting challenge for rational reduction of
realistic combustion systems.

Appendix A. Galerkin projection of polynomials with cosine basis functions. To reduce
computational costs as well as simplify the analysis, the inner products of arbitrary low-order
monomials are analytically simplified into their respective Galerkin projection amplitudes for
cosine basis functions. This is relevant since our reaction source terms in isothermal Arrhenius
kinetics are low-order polynomial systems, and the inner product distributes to each monomial
as a linear operator. Here we examine up to third-order monomial expansions of arbitrary
species labeled with subscripts a, b, and c.

In the following derivations, we take advantage of the fact that cosine is an even function,

(A.1) cos
(mπx

�

)
= cos

(
−mπx

�

)
.

We apply the normalized inner product for our orthogonal basis functions with arbitrarily
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signed arguments by using the Kronecker delta function for both the positive and negative of
our function’s argument.

Since the inner product is a linear operator and can be distributed to each term of a
polynomial, we examine each order of monomial individually. For constants, we see that the
normalized inner product results in the constant appearing only in the m = 0 term of the
Galerkin projection. When φ0 = 1, as it does in our Galerkin projection, the constant remains
unchanged,

(A.2)
〈φm, c〉
〈φm, φm〉 = cδm,0.

Single variables are expanded into a summation of their amplitudes and basis functions,

(A.3) za =

M∑
i=0

ζa,i cos

(
iπx

�

)
.

The normalized inner product can be distributed into this summation, and the orthogonality
of basis functions yields each amplitude of that variable appearing in its respective term in
the Galerkin expansion with unchanged coefficients,

(A.4)
〈φm, za〉
〈φm, φm〉 =

M∑
i=0

ζa,i
1 + δm,0

(δm,i + δm,−i) = ζa,m.

An arbitrary second-order monomial expands into the following summation by using trigono-
metric identities to reduce products of cosines into sums of cosines:

zazb =

(
M∑
i=0

ζa,i cos

(
iπx

�

))⎛⎝ M∑
j=0

ζb,j cos

(
jπx

�

)⎞⎠(A.5a)

=

M∑
i=0

M∑
j=0

ζa,iζb,j cos

(
iπx

�

)
cos

(
jπx

�

)
(A.5b)

=
M∑
i=0

M∑
j=0

ζa,iζb,j
2

(
cos

(
(i+ j)πx

�

)
+ cos

(
(i− j)πx

�

))
.(A.5c)

Here the normalized inner product again distributes to each term in the series, yielding

(A.6)
〈φm, za zb〉
〈φm, φm〉 =

M∑
i=0

M∑
j=0

ζa,i ζb,j
2 (1 + δm,0)

(δm,i+j + δm,i−j + δm,−i+j + δm,−i−j) .
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Third-order monomials are expanded in a similar fashion to second-order monomials,

zazbzc =

(
M∑
i=0

ζa,i cos

(
iπx

�

))⎛⎝ M∑
j=0

ζb,j cos

(
jπx

�

)⎞⎠( M∑
k=0

ζc,k cos

(
kπx

�

))
(A.7a)

=
M∑
i=0

M∑
j=0

M∑
k=0

ζa,iζb,jζc,k cos

(
iπx

�

)
cos

(
jπx

�

)
cos

(
kπx

�

)
(A.7b)

=

M∑
i=0

M∑
j=0

M∑
k=0

ζa,iζb,jζc,k
4

⎛
⎝cos

(
(i+j+k)πx

�

)
+ cos

(
(i+j−k)πx

�

)
+

cos
(
(i−j+k)πx

�

)
+ cos

(
(−i+j+k)πx

�

)
⎞
⎠ .(A.7c)

Once more, the normalized inner product distributes to each term in the series, yielding
(A.8)

〈φm, za zb zc〉
〈φm, φm〉 =

M∑
i=0

M∑
j=0

M∑
k=0

ζa,i ζb,j ζc,k
4 (1 + δm,0)

(
δm,i+j+k + δm,i+j−k + δm,i−j+k + δm,−i+j+k +

δm,i−j−k + δm,−i+j−k + δm,−i−j+k + δm,−i−j−k

)
.

This pattern continues for higher-order polynomials and provides a computationally efficient
method of solving and analyzing the Galerkin projection ODEs for the low-order polynomial
systems that we find in isothermal Arrhenius kinetics.

Appendix B. Block Jacobian matrix. We evaluate the Jacobian matrix of a Galerkin pro-
jection at a spatially homogeneous point. This analysis is applicable for any set of orthogonal
basis functions, φm form = 0, . . . ,M (as long as φ0 is a spatially homogeneous basis function),
and for an arbitrary function, ω̇i(zj) for i, j = 1, . . . , R. We choose to order the Galerkin
projection species amplitude vector first by basis function and then by species by defining
{i,m} = mR + i. Therefore, the vector, ζ{i,m} = ζi,m for i = 1, . . . , R and m = 0, . . . ,M ,
contains all R(M + 1) elements of the species amplitudes sorted in our prescribed fashion.
The reaction source terms become ordered as

(B.1) Ω̇{i,m} =
〈φm, Ω̇i(

∑M
n=0 ζj,nφn)〉

〈φm, φm〉 for i, j = 1, . . . , R and m = 0, . . . ,M.

To find the Jacobian of a point in the spatially homogeneous subspace, ζSHi,m (where ζSHi,m = 0
for m > 0), we then take the partial derivative of the Galerkin projection with respect to an
arbitrary species amplitude,

(B.2) J{i,m},{j,n} =
∂

∂ζj,n

(
〈φm, Ω̇i(

∑M
n=0 ζj,nφn)〉

〈φm, φm〉 − m2π2D

�2
ζi,m

)∣∣∣∣∣
ζ=ζSH

.

We can distribute the partial derivative into the linear operators and apply them at the point
in the spatially homogeneous subspace to get

(B.3) J{i,m},{j,n} =
〈φm, ∂

∂ζj,n
Ω̇i(
∑M

n̂=0 ζĵ,n̂φn̂)|ζ=ζSH〉
〈φm, φm〉 − m2π2D

�2
∂ζi,m
∂ζj,n

∣∣∣∣
ζ=ζSH

.
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The partial derivative in the diffusion term can be reduced to a Kronecker delta function,

(B.4) J{i,m},{j,n} =
〈φm, ∂

∂ζj,n
Ω̇i(
∑M

n̂=0 ζĵ,n̂φn̂)|ζ=ζSH 〉
〈φm, φm〉 − m2π2D

�2
δ{i,m},{j,n}.

Then we take the derivative of the arbitrary nonlinear reaction function. The derivative can
be reduced to be with respect to zj since it is evaluated at the spatially homogeneous zSH .
Because of the chain rule, the basis function, φn, becomes a coefficient of the derivative,
yielding

(B.5) J{i,m},{j,n} =
〈φm, φn ∂Ω̇i

∂zj
〉

〈φm, φm〉 − m2π2D

�2
δ{i,m},{j,n}.

Finally, the orthogonality of the basis functions will yield another Kronecker delta function,
resulting in

(B.6) J{i,m},{j,n} =
∂Ω̇i

∂zj
δm,n − m2π2D

�2
δ{i,m},{j,n}.

This Jacobian is in the form of a block diagonal matrix. The first term, (∂Ω̇i/∂zj)δm,n,
populates the R × R diagonal blocks with the spatially homogeneous Jacobian matrix. The
second term, (m2π2D/�2)δ{i,m},{j,n}, yields a diffusion component along the diagonal of each
block.

Appendix C. Poincaré sphere. To evaluate the dynamics at infinity, our domain is pro-
jected onto the Poincaré sphere [48], mapping ζ ∈ R

M+1 �→ η ∈ R
M+2 via the coordinate

transformation,

ηi =
ζi√

1 +
∑M

m=0 ζ
2
m

for i = 0, . . . ,M,(C.1a)

ηM+1 =
1√

1 +
∑M

m=0 ζ
2
m

.(C.1b)

Under this transformation, the η-coordinates are constrained by

(C.2)

M+1∑
i=0

η2i = 1,

which means that the ζ-coordinate system is mapped onto an (M + 1)-dimensional unit
hypersphere in η-space. The inverse transformation exists,

(C.3) ζi =
ηi

ηM+1
for i = 0, . . . ,M.

When we examine only ηi for i = 0, . . . ,M , we project the unit hypersphere into an (M +1)-
dimensional space and the constraint in (C.2) becomes an inequality,

(C.4)
M∑
i=0

η2i ≤ 1.
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For this transformation, in the limit as ζi → ∞, for any i = 0, . . . ,M , ηi becomes 1. More
generally, in the limit as any set of ζi → ∞, the resulting transformed variables, ηi, are finite
and constrained by

(C.5)
M∑
i=0

η2i = 1.

Therefore, the points at infinity in ζ-coordinates are mapped onto an M -dimensional unit
hypersphere in the η-coordinates. For finite values of ζi,

(C.6)
M∑
i=0

η2i < 1;

therefore, all of the finite dynamics in the ζ-coordinates are contained within the M -dimen-
sional unit sphere in the η-coordinates. In the Poincaré sphere coordinate transformation, the
entire ζ-coordinate system, both finite and infinite, is mapped onto a unit sphere. This allows
the entire system’s dynamics to be examined, including the dynamics at infinity.
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